Low frequency temperature forcing of chemical oscillations
Research output: Contribution to journal › Article
Authors
Colleges, School and Institutes
Abstract
The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.
Details
Original language | English |
---|---|
Pages (from-to) | 12321-12327 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 13 |
Issue number | 26 |
Publication status | Published - 1 Jan 2011 |