Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM

Research output: Contribution to journalArticle

Abstract

This study aims to validate the widely used regional climate model COSMO-CLM driven by ERA-Interim reanalysis data with a spatial resolution of 55 km with respect to observed features of the intraseasonal variability of the Indian summer monsoon (ISM) during the period 1979 until 2011. One of these features is the northward propagation of the ISM intraseasonal oscillations. We find, that the temporal evolution between model and observation is in good agreement, while less agreement with respect to the strength is found. Furthermore, the model’s capability to simulate observed dry and wet events on a weekly time-scale is investigated using the standardized precipitation index. In general, the model is capable to simulate these events with a similar magnitude at the same time. Observational based analyses show, that the coupling between atmospheric circulation anomalies and rainfall anomalies over India on the intraseasonal time scale is well represented by the model. The most important circulation anomalies for dry events are a lower tropospheric anti-cyclonic vortex over India and partly an upper tropospheric cyclonic vortex over the Pakistan region and vice versa for wet events. The model shows a slightly higher ability to simulate dry compared to wet events. Overall, this study shows that the current configuration of COSMO-CLM is able to simulate the key features of the intraseasonal variability of the Indian summer monsoon. Being aware of its limitation, COSMO-CLM is suitable to investigate possible changes of the intraseasonal variability of ISM under changed climate conditions in the past or in the future.

Details

Original languageEnglish
Pages (from-to)2635–2651
JournalClimate Dynamics
Volume47
Issue number7
Early online date18 Feb 2016
Publication statusPublished - Oct 2016

Keywords

  • Indian summer monsoon, Regional climate modeling, Intraseasonal variability, Extreme events