Injective types in univalent mathematics

Research output: Contribution to journalArticlepeer-review

Colleges, School and Institutes

Abstract

We investigate the injective types and the algebraically injective types in univalent mathematics, both in the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the restriction map along any embedding, and algebraic injectivity is defined by a given section of the restriction map along any embedding. Under propositional resizing axioms, the main results are easy to state: (1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective sets are precisely the retracts of powersets. (2b) The algebraically injective (n+1)-types are precisely the retracts of exponential powers of universes of n-types. (3) The algebraically injective types are also precisely the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as a retract of any larger universe. In the absence of propositional resizing, we have similar results which have subtler statements that need to keep track of universe levels rather explicitly, and are applied to get the results that require resizing.

Details

Original languageEnglish
Number of pages28
JournalMathematical Structures in Computer Science
Publication statusAccepted/In press - 26 Aug 2020

Keywords

  • Injective type, flabby type, Kan extension, partial-map classifier, univalent mathematics, univalence axiom