Individual movement features during prism adaptation correlate with after-effects and interlimb transfer

Research output: Contribution to journalArticle


  • Alix G Renault
  • Hannah Lefumat
  • Lionel Bringoux
  • Christophe Bourdin
  • Jean-Louis Vercher
  • Fabrice R Sarlegna

Colleges, School and Institutes

External organisations

  • Aix Marseille Univ, CNRS, ISM, Marseille, France.
  • Department of Neuroscience, University of Pennsylvania, Philadelphia, USA.
  • Department of Psychology, Peking University, Beijing, China ; School of Psychology, University of Birmingham, Birmingham, UK.
  • Aix Marseille Univ, CNRS, ISM, Marseille, France.
  • Aix Marseille Univ, CNRS, ISM, Marseille, France.


The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.


Original languageEnglish
JournalPsychological Research
Early online date8 Nov 2018
Publication statusE-pub ahead of print - 8 Nov 2018