Indexing electron backscatter diffraction patterns with a refined template matching approach
Research output: Contribution to journal › Article › peer-review
Standard
Indexing electron backscatter diffraction patterns with a refined template matching approach. / Foden, Alex; Collins, David; Wilkinson, Angus; Britton, Ben.
In: Ultramicroscopy, Vol. 207, 112845, 01.12.2019.Research output: Contribution to journal › Article › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Indexing electron backscatter diffraction patterns with a refined template matching approach
AU - Foden, Alex
AU - Collins, David
AU - Wilkinson, Angus
AU - Britton, Ben
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Electron backscatter diffraction (EBSD) is a well-established method of characterisation for crystalline materials. Using this technique, we can rapidly acquire and index diffraction patterns to provide phase and orientation information about the crystals on the material surface. The conventional analysis method uses signal processing based on a Hough/Radon transform to index each diffraction pattern. This method is limited to the analysis of simple geometric features and ignores subtle characteristics of diffraction patterns, such as variations in relative band intensities. A second method, developed to address the shortcomings of the Hough/Radon transform, is based on template matching of a test experimental pattern with a large library of potential patterns. In the present work, the template matching approach has been refined with a new cross correlation function that allows for a smaller library and enables a dramatic speed up in pattern indexing. Refinement of the indexed orientation is performed with a follow-up step to allow for small alterations to the best match from the library search. The refined template matching approach is shown to be comparable in accuracy, precision and sensitivity to the Hough based method, even exceeding it in some cases, via the use of simulations and experimental data collected from a silicon single crystal and a deformed α-iron sample. The speed up and pattern refinement approaches should increase the widespread utility of pattern matching approaches.
AB - Electron backscatter diffraction (EBSD) is a well-established method of characterisation for crystalline materials. Using this technique, we can rapidly acquire and index diffraction patterns to provide phase and orientation information about the crystals on the material surface. The conventional analysis method uses signal processing based on a Hough/Radon transform to index each diffraction pattern. This method is limited to the analysis of simple geometric features and ignores subtle characteristics of diffraction patterns, such as variations in relative band intensities. A second method, developed to address the shortcomings of the Hough/Radon transform, is based on template matching of a test experimental pattern with a large library of potential patterns. In the present work, the template matching approach has been refined with a new cross correlation function that allows for a smaller library and enables a dramatic speed up in pattern indexing. Refinement of the indexed orientation is performed with a follow-up step to allow for small alterations to the best match from the library search. The refined template matching approach is shown to be comparable in accuracy, precision and sensitivity to the Hough based method, even exceeding it in some cases, via the use of simulations and experimental data collected from a silicon single crystal and a deformed α-iron sample. The speed up and pattern refinement approaches should increase the widespread utility of pattern matching approaches.
KW - Electron microscopy
KW - Computer vision
KW - Image processing
U2 - 10.1016/j.ultramic.2019.112845
DO - 10.1016/j.ultramic.2019.112845
M3 - Article
VL - 207
JO - Ultramicroscopy
JF - Ultramicroscopy
SN - 0304-3991
M1 - 112845
ER -