Improved analysis of GW150914 using a fully spin-precessing waveform model

B. P. Abbott, Alberto Vecchio, The LIGO Scientific Collaboration, Virgo Collaboration

Research output: Contribution to journalArticlepeer-review

96 Citations (Scopus)
129 Downloads (Pure)

Abstract

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35+5−3M⊙ and 30+3−4M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Original languageEnglish
JournalPhysical Review X
Volume6
Issue number4
DOIs
Publication statusPublished - 21 Oct 2016

Fingerprint

Dive into the research topics of 'Improved analysis of GW150914 using a fully spin-precessing waveform model'. Together they form a unique fingerprint.

Cite this