Hyperspectral chemical imaging reveals spatially varied degradation of polycarbonate urethane (PCU) biomaterials

Research output: Contribution to journalArticle

Colleges, School and Institutes

External organisations

  • UCD School of Biosystems and Food Engineering, University College Dublin, Ireland.
  • Department of Mechanical Engineering, School of Engineering, University of Birmingham, United Kingdom.
  • Department of Mechanical Engineering, School of Engineering, University of Birmingham, United Kingdom; PDR - International Centre for Design and Research, Cardiff Metropolitan University, United Kingdom.
  • UCD School of Biosystems and Food Engineering, University College Dublin, Ireland. Electronic address: aoife.gowen@ucd.ie.

Abstract

Hyperspectral chemical imaging (HCI) is an emerging technique which combines spectroscopy with imaging. Unlike traditional point spectroscopy, which is used in the majority of polymer biomaterial degradation studies, HCI enables the acquisition of spatially localised spectra across the surface of a material in an objective manner. Here, we demonstrate that attenuated total reflectance Fourier transform infra-red (ATR-FTIR) HCI reveals spatial variation in the degradation of implantable polycarbonate urethane (PCU) biomaterials. It is also shown that HCI can detect possible defects in biomaterial formulation or specimen production; these spatially resolved images reveal regional or scattered spatial heterogeneity. Further, we demonstrate a map sampling method, which can be used in time-sensitive scenarios, allowing for the investigation of degradation across a larger component or component area. Unlike imaging, mapping does not produce a contiguous image, yet grants an insight into the spatial heterogeneity of the biomaterial across a larger area. These novel applications of HCI demonstrate its ability to assist in the detection of defective manufacturing components and lead to a deeper understanding of how a biomaterial's chemical structure changes due to implantation. Statement of Signifance The human body is an aggressive environment for implantable devices and their biomaterial components. Polycarbonate urethane (PCU) biomaterials in particular were investigated in this study. Traditionally one or a few points on the PCU surface are analysed using ATR-FTIR spectroscopy. However the selection of acquisition points is susceptible to operator bias and critical information can be lost. This study utilises hyperspectral chemical imaging (HCI) to demonstrate that the degradation of a biomaterial varies spatially. Further, HCI revealed spatial variations of biomaterials that were not subjected to oxidative degradation leading to the possibility of HCI being used in the assessment of biomaterial formulation and/or component production.

Details

Original languageEnglish
JournalActa Biomaterialia
Early online date5 Apr 2018
Publication statusE-pub ahead of print - 5 Apr 2018

Keywords

  • biomaterial characterisation , biostability , hyperspectral chemical imaging , in vivo degradation , polycarbonate urethane