Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations

Stuart Hunter, Carrie Willcox, Martin Davey, Sofya A. Kasatskaya, Hannah Jeffery, Dmitriy Chudakov, Ye Oo, Benjamin Willcox

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)
319 Downloads (Pure)

Abstract

BACKGROUND & AIM: γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear.

METHODS: To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2neg γδ subset, which is implicated in liver immunopathology.

RESULTS: Intrahepatic Vδ2neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27lo/neg effector lymphocytes, whereas naïve CD27hi, TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RAhi Vδ2neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2neg γδ T-cell pool also included a phenotypically distinct CD45RAlo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli.

CONCLUSION: These findings suggest the ability of Vδ2neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or combat liver cancer.

LAY SUMMARY: γδ T cells are frequently enriched in many solid tissues, however the immunobiology of such tissue-associated subsets in humans has remained unclear. We show that intrahepatic γδ T cells are enriched for clonally expanded effector T cells, whereas naïve γδ T cells are largely excluded; moreover, whereas a distinct proportion of circulating T cell clonotypes was present in both the liver tissue and peripheral blood, a functionally and clonotypically distinct population of liver-resident γδ T cells was also evident. Our findings suggest that factors triggering γδ T cell clonal selection and differentiation, such as infection, can drive enrichment of γδ T cells into liver tissue, allowing the development of functionally distinct tissue-restricted memory populations specialised in local hepatic immunosurveillance.

Original languageEnglish
Pages (from-to)654-665
Number of pages12
JournalJournal of Hepatology
Volume69
Issue number3
Early online date18 May 2018
DOIs
Publication statusPublished - Sept 2018

Bibliographical note

Contact for queries - Stuart Hunter (S.Hunter@bham.ac.uk)

Keywords

  • Journal Article
  • γδ T-cells
  • liver immunopathology

Fingerprint

Dive into the research topics of 'Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations'. Together they form a unique fingerprint.

Cite this