Holographic Writing of Ink-Based Phase Conjugate Nanostructures via Laser Ablation

Research output: Contribution to journalArticle

Colleges, School and Institutes

External organisations

  • Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
  • Nanotechnology Laboratory, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK. h.butt@bham.ac.uk.

Abstract

The optical phase conjugation (OPC) through photonic nanostructures in coherent optics involves the utilization of a nonlinear optical mechanism through real-time processing of electromagnetic fields. Their applications include spectroscopy, optical tomography, wavefront sensing, and imaging. The development of functional and personalized holographic devices in the visible and near-infrared spectrum can be improved by introducing cost-effective, rapid, and high-throughput fabrication techniques and low-cost recording media. Here, we develop flat and thin phase-conjugate nanostructures on low-cost ink coated glass substrates through a facile and flexible single pulsed nanosecond laser based reflection holography and a cornercube retroreflector (CCR). Fabricated one/two-dimensional (1D/2D) nanostructures exhibited far-field phase-conjugated patterns through wavefront reconstruction by means of diffraction. The optical phase conjugation property had correlation with the laser light (energy) and structural parameters (width, height and exposure angle) variation. The phase conjugated diffraction property from the recorded nanostructures was verified through spectral measurements, far-field diffraction experiments, and thermal imaging. Furthermore, a comparison between the conventional and phase-conjugated nanostructures showed two-fold increase in diffracted light intensity under monochromatic light illumination. It is anticipated that low-cost ink based holographic phase-conjugate nanostructures may have applications in flexible and printable displays, polarization-selective flat waveplates, and adaptive diffraction optics.

Details

Original languageEnglish
Article number10603
JournalScientific Reports
Volume7
Issue number1
Early online date6 Sep 2017
Publication statusE-pub ahead of print - 6 Sep 2017

Keywords

  • Applied optics, Micro-optics