High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson's disease

Research output: Contribution to journalArticlepeer-review

Standard

High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson's disease. / Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Jenkinson, Ned.

In: Neuropsychologia, Vol. 50, No. 10, 08.2012, p. 2460-6.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{7a98b097d7c34d21b0532c7034fc537f,
title = "High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson's disease",
abstract = "Timing is central to all motor behavior, especially repetitive or rhythmic movements. Such complex programs are underpinned by a network of motor structures, including the cerebellum, motor cortex, and basal ganglia. Patients with Parkinson's disease (PD) are impaired in some aspects of timing behavior, presumably as a result of the disruption to basal ganglia function. However, direct evidence that this deficit is specifically due to basal ganglia dysfunction is limited. Here, we sought to further understand the role of the basal ganglia in motor timing by studying PD patients with implanted subthalamic nucleus (STN) electrodes. Patients performed a synchronization-continuation tapping task at 500 ms and 2000 ms intervals both off and on therapeutic high frequency stimulation of the STN. Our results show that the mean tap interval was not affected by STN stimulation. However, in the un-stimulated state variability of tapping was abnormally high relative to controls, and this deficit was significantly improved, even normalized, with stimulation. Moreover, when partitioning the variance into central and peripheral motor components according to the Wing and Kristofferson model (1973), a selective reduction of central, but not motor, variance was revealed. The effect of stimulation on central variance was dependent on off-stimulation performance. These results demonstrate that STN stimulation can improve rhythmic movement performance in PD through an effect on central timing. Our experimental approach strongly implicates the STN, and more generally the basal ganglia, in the control of timing stability.",
keywords = "Aged, Deep Brain Stimulation, Electrodes, Implanted, Female, Fingers, Humans, Male, Middle Aged, Models, Psychological, Motor Activity, Neuropsychological Tests, Parkinson Disease, Subthalamic Nucleus, Time Factors, Journal Article, Research Support, Non-U.S. Gov't",
author = "Joundi, {Raed A} and John-Stuart Brittain and Green, {Alex L} and Aziz, {Tipu Z} and Ned Jenkinson",
note = "Copyright {\textcopyright} 2012 Elsevier Ltd. All rights reserved.",
year = "2012",
month = aug,
doi = "10.1016/j.neuropsychologia.2012.06.017",
language = "English",
volume = "50",
pages = "2460--6",
journal = "Neuropsychologia",
issn = "0028-3932",
publisher = "Elsevier",
number = "10",

}

RIS

TY - JOUR

T1 - High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson's disease

AU - Joundi, Raed A

AU - Brittain, John-Stuart

AU - Green, Alex L

AU - Aziz, Tipu Z

AU - Jenkinson, Ned

N1 - Copyright © 2012 Elsevier Ltd. All rights reserved.

PY - 2012/8

Y1 - 2012/8

N2 - Timing is central to all motor behavior, especially repetitive or rhythmic movements. Such complex programs are underpinned by a network of motor structures, including the cerebellum, motor cortex, and basal ganglia. Patients with Parkinson's disease (PD) are impaired in some aspects of timing behavior, presumably as a result of the disruption to basal ganglia function. However, direct evidence that this deficit is specifically due to basal ganglia dysfunction is limited. Here, we sought to further understand the role of the basal ganglia in motor timing by studying PD patients with implanted subthalamic nucleus (STN) electrodes. Patients performed a synchronization-continuation tapping task at 500 ms and 2000 ms intervals both off and on therapeutic high frequency stimulation of the STN. Our results show that the mean tap interval was not affected by STN stimulation. However, in the un-stimulated state variability of tapping was abnormally high relative to controls, and this deficit was significantly improved, even normalized, with stimulation. Moreover, when partitioning the variance into central and peripheral motor components according to the Wing and Kristofferson model (1973), a selective reduction of central, but not motor, variance was revealed. The effect of stimulation on central variance was dependent on off-stimulation performance. These results demonstrate that STN stimulation can improve rhythmic movement performance in PD through an effect on central timing. Our experimental approach strongly implicates the STN, and more generally the basal ganglia, in the control of timing stability.

AB - Timing is central to all motor behavior, especially repetitive or rhythmic movements. Such complex programs are underpinned by a network of motor structures, including the cerebellum, motor cortex, and basal ganglia. Patients with Parkinson's disease (PD) are impaired in some aspects of timing behavior, presumably as a result of the disruption to basal ganglia function. However, direct evidence that this deficit is specifically due to basal ganglia dysfunction is limited. Here, we sought to further understand the role of the basal ganglia in motor timing by studying PD patients with implanted subthalamic nucleus (STN) electrodes. Patients performed a synchronization-continuation tapping task at 500 ms and 2000 ms intervals both off and on therapeutic high frequency stimulation of the STN. Our results show that the mean tap interval was not affected by STN stimulation. However, in the un-stimulated state variability of tapping was abnormally high relative to controls, and this deficit was significantly improved, even normalized, with stimulation. Moreover, when partitioning the variance into central and peripheral motor components according to the Wing and Kristofferson model (1973), a selective reduction of central, but not motor, variance was revealed. The effect of stimulation on central variance was dependent on off-stimulation performance. These results demonstrate that STN stimulation can improve rhythmic movement performance in PD through an effect on central timing. Our experimental approach strongly implicates the STN, and more generally the basal ganglia, in the control of timing stability.

KW - Aged

KW - Deep Brain Stimulation

KW - Electrodes, Implanted

KW - Female

KW - Fingers

KW - Humans

KW - Male

KW - Middle Aged

KW - Models, Psychological

KW - Motor Activity

KW - Neuropsychological Tests

KW - Parkinson Disease

KW - Subthalamic Nucleus

KW - Time Factors

KW - Journal Article

KW - Research Support, Non-U.S. Gov't

U2 - 10.1016/j.neuropsychologia.2012.06.017

DO - 10.1016/j.neuropsychologia.2012.06.017

M3 - Article

C2 - 22749972

VL - 50

SP - 2460

EP - 2466

JO - Neuropsychologia

JF - Neuropsychologia

SN - 0028-3932

IS - 10

ER -