Hamilton cycles in hypergraphs below the Dirac threshold

Research output: Contribution to journalArticle

Colleges, School and Institutes

Abstract

We establish a precise characterisation of $4$-uniform hypergraphs with minimum codegree close to $n/2$ which contain a Hamilton $2$-cycle. As an immediate corollary we identify the exact Dirac threshold for Hamilton $2$-cycles in $4$-uniform hypergraphs. Moreover, by derandomising the proof of our characterisation we provide a polynomial-time algorithm which, given a $4$-uniform hypergraph $H$ with minimum codegree close to $n/2$, either finds a Hamilton $2$-cycle in $H$ or provides a certificate that no such cycle exists. This surprising result stands in contrast to the graph setting, in which below the Dirac threshold it is NP-hard to determine if a graph is Hamiltonian. We also consider tight Hamilton cycles in $k$-uniform hypergraphs $H$ for $k \geq 3$, giving a series of reductions to show that it is NP-hard to determine whether a $k$-uniform hypergraph $H$ with minimum degree $\delta(H) \geq \frac{1}{2}|V(H)| - O(1)$ contains a tight Hamilton cycle. It is therefore unlikely that a similar characterisation can be obtained for tight Hamilton cycles.

Details

Original languageEnglish
JournalJournal of Combinatorial Theory. Series B
Early online date9 May 2018
Publication statusE-pub ahead of print - 9 May 2018

Keywords

  • Hamilton cycles, Hypergraphs