Finite Intervals in the Lattice of Topologies

Research output: Contribution to journalArticle

Standard

Finite Intervals in the Lattice of Topologies. / Brian, W. R.; Good, Christopher; Knight, R. W.; McIntyre, D. W.

In: Order, Vol. 31, No. 3, 11.2014, p. 325-335.

Research output: Contribution to journalArticle

Harvard

Brian, WR, Good, C, Knight, RW & McIntyre, DW 2014, 'Finite Intervals in the Lattice of Topologies', Order, vol. 31, no. 3, pp. 325-335. https://doi.org/10.1007/s11083-013-9304-6

APA

Brian, W. R., Good, C., Knight, R. W., & McIntyre, D. W. (2014). Finite Intervals in the Lattice of Topologies. Order, 31(3), 325-335. https://doi.org/10.1007/s11083-013-9304-6

Vancouver

Author

Brian, W. R. ; Good, Christopher ; Knight, R. W. ; McIntyre, D. W. / Finite Intervals in the Lattice of Topologies. In: Order. 2014 ; Vol. 31, No. 3. pp. 325-335.

Bibtex

@article{5c95bcab5e044464be75049b1c1951f6,
title = "Finite Intervals in the Lattice of Topologies",
abstract = "We prove a conjecture of Reinhold: that a finite lattice is isomorphic to an interval in the lattice of topologies on some set if and only if it is isomorphic to an interval in the lattice of topologies on a finite set.",
keywords = "Finite intervals of topologies, Finite topologies, Lattice of topologies, Quasiorders",
author = "Brian, {W. R.} and Christopher Good and Knight, {R. W.} and McIntyre, {D. W.}",
year = "2014",
month = nov,
doi = "10.1007/s11083-013-9304-6",
language = "English",
volume = "31",
pages = "325--335",
journal = "Order",
issn = "0167-8094",
publisher = "Springer",
number = "3",

}

RIS

TY - JOUR

T1 - Finite Intervals in the Lattice of Topologies

AU - Brian, W. R.

AU - Good, Christopher

AU - Knight, R. W.

AU - McIntyre, D. W.

PY - 2014/11

Y1 - 2014/11

N2 - We prove a conjecture of Reinhold: that a finite lattice is isomorphic to an interval in the lattice of topologies on some set if and only if it is isomorphic to an interval in the lattice of topologies on a finite set.

AB - We prove a conjecture of Reinhold: that a finite lattice is isomorphic to an interval in the lattice of topologies on some set if and only if it is isomorphic to an interval in the lattice of topologies on a finite set.

KW - Finite intervals of topologies

KW - Finite topologies

KW - Lattice of topologies

KW - Quasiorders

UR - http://www.scopus.com/inward/record.url?scp=84908508164&partnerID=8YFLogxK

U2 - 10.1007/s11083-013-9304-6

DO - 10.1007/s11083-013-9304-6

M3 - Article

AN - SCOPUS:84908508164

VL - 31

SP - 325

EP - 335

JO - Order

JF - Order

SN - 0167-8094

IS - 3

ER -