Fat oxidation after acipimox-induced reduction in plasma nonesterified fatty acids during exercise at 0 degrees C and 20 degrees C

Joseph D Layden, Dalia Malkova, Myra A Nimmo

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The main aim of this study was to investigate if whole body fat oxidation, after acipimox administration, during submaximal exercise in the cold, is different from that at temperate environments. Seven healthy recreationally active male subjects cycled at 70% Vo(2peak) for 60 minutes; once at 0 degrees C and once at 20 degrees C. To exclude availability, and therefore oxidation of plasma-derived nonesterified fatty acids (NEFA), 90 minutes before each cycling bout, subjects ingested 250 mg of the antilipolytic drug, acipimox. Blood and expired gas measurements were obtained at rest, immediately before exercise, and at 15, 30, 45, and 60 minutes of exercise. In both trials, after the ingestion of acipimox, plasma NEFA concentrations fell dramatically and immediately before and during exercise were lower than 0.05 mmol. L(-1) in both trials. Pre-exercise and exercise values of glycerol, glucose, triacylglycerol (TG), and rectal temperature (T(re)) were not different between the 0 degrees C and 20 degrees C trials. During exercise at 0 degrees C, skin temperature (T(sk)) was significantly reduced from pre-exercise values (P <.05) and at all time points was significantly lower than during exercise at 20 degrees C. Muscle temperature did not differ between trials but in both trials was lower (P <.05) at 1 cm depth than at 3 cm and 2 cm. Gross energy expenditure of cycling (0 degrees C trial, 3.6 +/- 0.1 MJ; 20 degrees C trial, 3.6 +/- 0.1 MJ), the oxidation rates of carbohydrate (0 degrees C, 32.4 +/- 0.5 KJ. min(-1); 20 degrees C, 32.6 +/- 0.7 KJ. min(-1)) and fat (0 degrees C, 24.6 +/- 1.2 KJ. min(-1); 20 degrees C, 23.0 +/- 1.8 KJ. min(-1)), and the proportion of energy derived from fat (0 degrees C, 45 +/- 1 %; 20 degrees C, 40 +/- 4%) and carbohydrate (0 degrees C, 55 +/- 1%; 20 degrees C, 58 +/- 3%) were not different between the 2 trials. In conclusion, after acipimox administration, whole body fat oxidation during exercise, designed to avoid adjustment of core temperature or thermogenesis, is not different at 0 degrees C compared with 20 degrees C. This allows the inference that during submaximal exercise, cold has no effect on the utilization of intramuscular TG (IMTG).

Original languageEnglish
Pages (from-to)1131-5
Number of pages5
JournalMetabolism
Volume53
Issue number9
Publication statusPublished - Sept 2004

Keywords

  • Adult
  • Bicycling
  • Blood Volume
  • Body Temperature
  • Carbohydrate Metabolism
  • Exercise
  • Exercise Test
  • Fatty Acids, Nonesterified
  • Heart Rate
  • Humans
  • Hypolipidemic Agents
  • Lipid Metabolism
  • Male
  • Muscle, Skeletal
  • Oxidation-Reduction
  • Pyrazines
  • Temperature
  • Triglycerides

Fingerprint

Dive into the research topics of 'Fat oxidation after acipimox-induced reduction in plasma nonesterified fatty acids during exercise at 0 degrees C and 20 degrees C'. Together they form a unique fingerprint.

Cite this