Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing

L A Snyder, N J Loman, L A Faraj, K Levi, G Weinstock, T C Boswell, M J Pallen, D A Ala'Aldeen

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Although previous bacterial typing methods have been informative about potential relatedness of isolates collected during outbreaks, next-generation sequencing has emerged as a powerful tool to not only look at similarity between isolates, but also put differences into biological context. In this study, we have investigated the whole genome sequence of five Pseudomonas aeruginosa isolates collected during a persistent six-year outbreak at Nottingham University Hospitals National Health Service (NHS) Trust – City Campus, United Kingdom. Sequencing, using both Roche 454 and Illumina, reveals that most of these isolates are closely related. Some regions of difference are noted between this cluster of isolates and previously published genome sequences. These include regions containing prophages and prophage remnants such as the serotype-converting bacteriophage D3 and the cytotoxin-converting phage phi CTX. Additionally, single nucleotide polymorphisms (SNPs) between the genomic sequence data reveal key single base differences that have accumulated during the course of this outbreak, giving insight into the evolution of the outbreak strain. Differentiating SNPs were found within a wide variety of genes, including lasR, nrdG, tadZ, and algB. These have been generated at a rate estimated to be one SNP every four to five months. In conclusion, we demonstrate that the single base resolution of whole genome sequencing is a powerful tool in analysis of outbreak isolates that can not only show strain similarity, but also evolution over time and potential adaptation through gene sequence changes.

Original languageEnglish
JournalEuro surveillance : bulletin européen sur les maladies transmissibles = European communicable disease bulletin
Volume18
Issue number42
Publication statusPublished - 2013

Keywords

  • Disease Outbreaks
  • Drug Resistance, Bacterial
  • Epidemiological Monitoring
  • Female
  • Genome, Bacterial
  • Great Britain
  • High-Throughput Nucleotide Sequencing
  • Hospitals
  • Humans
  • Male
  • Microbial Sensitivity Tests
  • Molecular Epidemiology
  • Polymorphism, Single Nucleotide
  • Pseudomonas Infections
  • Pseudomonas aeruginosa
  • Time Factors

Fingerprint

Dive into the research topics of 'Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing'. Together they form a unique fingerprint.

Cite this