Environmentally relevant iron oxide nanoparticles produce limited acute pulmonary effects in rats at realistic exposure levels
Research output: Contribution to journal › Article › peer-review
Authors
Colleges, School and Institutes
External organisations
- Public Health England
- Univerisity of Edinburgh Med. School
- Universitat Jaume I
- Barcelona Biomedical Research Park
- Environmental Research Group
- Imperial College London
- Boston College
- Wardell Armstrong LLP
Abstract
Iron is typically the dominant metal in the ultrafine fraction of airborne particulate matter. Various studies have investigated the toxicity of inhaled nano-sized iron oxide particles (FeOx NPs) but their results have been contradictory, with some indicating no or minor effects and others finding effects including oxidative stress and inflammation. Most studies, however, did not use materials reflecting the characteristics of FeOx NPs present in the environment. We, therefore, analysed the potential toxicity of FeOx NPs of different forms (Fe3 O4, α-Fe2 O3 and γ-Fe2 O3) reflecting the characteristics of high iron content nano-sized particles sampled from the environment, both individually and in a mixture (FeOx-mix). A preliminary in vitro study indicated Fe3 O4 and FeOx-mix were more cytotoxic than either form of Fe2 O3 in human bronchial epithelial cells (BEAS-2B). Follow-up in vitro (0.003, 0.03, 0.3 µg/mL, 24 h) and in vivo (Sprague–Dawley rats, nose-only exposure, 50 µg/m3 and 500 µg/m3, 3 h/d × 3 d) studies therefore focused on these materials. Experiments in vitro explored responses at the molecular level via multi-omics analyses at concentrations below those at which significant cytotoxicity was evident to avoid detection of responses secondary to toxicity. Inhalation experiments used aerosol concentrations chosen to produce similar levels of particle deposition on the airway surface as were delivered in vitro. These were markedly higher than environmental concentrations. No clinical signs of toxicity were seen nor effects on BALF cell counts or LDH levels. There were also no significant changes in transcriptomic or metabolomic responses in lung or BEAS-2B cells to suggest adverse effects.
Bibliographic note
Details
Original language | English |
---|---|
Article number | 556 |
Pages (from-to) | 1-24 |
Number of pages | 24 |
Journal | International Journal of Molecular Sciences |
Volume | 22 |
Issue number | 2 |
Publication status | Published - 2 Jan 2021 |
Keywords
- Inhalation, Iron oxide, Lung, Nanoparticle, Omics, Rat, Ultrafine