Enhanced hydrogenation catalyst synthesized by Desulfovibrio desulfuricans exposed to a radio frequency magnetic field

Research output: Contribution to journalArticlepeer-review


  • John Collins
  • Jaime Gomez-Bolivar
  • Mohamed L Merroun

Colleges, School and Institutes

External organisations

  • C-Tech Innovation Ltd
  • University of Granada


Desulfovibrio desulfuricans reduces Pd(II) to Pd(0)-nanoparticles (Pd-NPs) which are catalytically active in 2-pentyne hydrogenation. To make Pd-NPs, resting cells are challenged with Pd(II) ions (uptake), followed by addition of electron donor to promote bioreduction of cell-bound Pd(II) to Pd(0) (bio-Pd). Application of radiofrequency (RF) radiation to prepared 5 wt% bio-Pd catalyst (60 W power, 60 min) increased the hydrogenation rate by 70% with no adverse impact on selectivity to cis-2-pentene. Such treatment of a 5 wt% Pd/carbon commercial catalyst did not affect the conversion rate but reduced the selectivity. Lower-dose RF radiation (2-8 W power, 20 min) was applied to the bacteria at various stages before and during synthesis of the bio-scaffolded Pd-NPs. The reaction rate (μ mol 2-pentyne converted s-1 ) was increased by ~threefold by treatment during bacterial catalyst synthesis. Application of RF radiation (2 or 4 W power) to resting cells prior to Pd(II) exposure affected the catalyst made subsequently, increasing the reaction rate by 50% as compared to untreated cells, while nearly doubling selectivity for cis 2-pentene. The results are discussed with respect to published and related work which shows altered dispersion of the Pd-NPs made following or during RF exposure.

Bibliographic note

© 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


Original languageEnglish
JournalMicrobial Biotechnology
Early online date3 Jul 2021
Publication statusE-pub ahead of print - 3 Jul 2021