Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface

Research output: Contribution to journalArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{53f3a061446446afbec3f18a511cd400,
title = "Enhanced discharge energy density of rGO/PVDF nanocomposites:: The role of the heterointerface",
abstract = "Recent reports of conductive-filler/polymer composites with large dielectric permittivity (K) make them potential candidates for flexible capacitors. Hence, an interesting question is how these high K composites behave under a strong electric field strength. In this letter, we use in-situ-reduced graphite oxide (rGO)/poly(vinylidene fluoride) (PVDF) nanocomposites as an example to study the energy storage behaviour of high K materials. We show the dielectric behaviour contrasts between weak and strong fields. High K materials inevitably become more lossy with increasing field strength. Simultaneously, we reveal that the in-situ reduction temperature can affect the energy storage performance. Improved energy storage performance is achieved for a nanocomposite reduced at a moderate temperature. When reduced at 160 C, a device with an rGO volume fraction of 1.5 vol. % displayed a discharge energy density of 0.67 J/cm3 at 50 MV/m. This was 2.9 times greater than pure PVDF. We develop a model to explain this behaviour that proposes a reduced electrical contrast of the rGO/PVDF heterointerface minimising the recombination of localized charge carriers. Our results indicate, simultaneously, the potential and limitation of high K nanocomposites and shed light on the optimisation of the design and fabrication of high discharge energy density flexible capacitors for microelectronic devices.",
author = "Ye Zhang and Yaqiong Wang and Shaojun Qi and Steven Dunn and Hanshan Dong and Timothy Button",
year = "2018",
month = may,
day = "16",
doi = "10.1063/1.5026180",
language = "English",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics",

}

RIS

TY - JOUR

T1 - Enhanced discharge energy density of rGO/PVDF nanocomposites:

T2 - The role of the heterointerface

AU - Zhang, Ye

AU - Wang, Yaqiong

AU - Qi, Shaojun

AU - Dunn, Steven

AU - Dong, Hanshan

AU - Button, Timothy

PY - 2018/5/16

Y1 - 2018/5/16

N2 - Recent reports of conductive-filler/polymer composites with large dielectric permittivity (K) make them potential candidates for flexible capacitors. Hence, an interesting question is how these high K composites behave under a strong electric field strength. In this letter, we use in-situ-reduced graphite oxide (rGO)/poly(vinylidene fluoride) (PVDF) nanocomposites as an example to study the energy storage behaviour of high K materials. We show the dielectric behaviour contrasts between weak and strong fields. High K materials inevitably become more lossy with increasing field strength. Simultaneously, we reveal that the in-situ reduction temperature can affect the energy storage performance. Improved energy storage performance is achieved for a nanocomposite reduced at a moderate temperature. When reduced at 160 C, a device with an rGO volume fraction of 1.5 vol. % displayed a discharge energy density of 0.67 J/cm3 at 50 MV/m. This was 2.9 times greater than pure PVDF. We develop a model to explain this behaviour that proposes a reduced electrical contrast of the rGO/PVDF heterointerface minimising the recombination of localized charge carriers. Our results indicate, simultaneously, the potential and limitation of high K nanocomposites and shed light on the optimisation of the design and fabrication of high discharge energy density flexible capacitors for microelectronic devices.

AB - Recent reports of conductive-filler/polymer composites with large dielectric permittivity (K) make them potential candidates for flexible capacitors. Hence, an interesting question is how these high K composites behave under a strong electric field strength. In this letter, we use in-situ-reduced graphite oxide (rGO)/poly(vinylidene fluoride) (PVDF) nanocomposites as an example to study the energy storage behaviour of high K materials. We show the dielectric behaviour contrasts between weak and strong fields. High K materials inevitably become more lossy with increasing field strength. Simultaneously, we reveal that the in-situ reduction temperature can affect the energy storage performance. Improved energy storage performance is achieved for a nanocomposite reduced at a moderate temperature. When reduced at 160 C, a device with an rGO volume fraction of 1.5 vol. % displayed a discharge energy density of 0.67 J/cm3 at 50 MV/m. This was 2.9 times greater than pure PVDF. We develop a model to explain this behaviour that proposes a reduced electrical contrast of the rGO/PVDF heterointerface minimising the recombination of localized charge carriers. Our results indicate, simultaneously, the potential and limitation of high K nanocomposites and shed light on the optimisation of the design and fabrication of high discharge energy density flexible capacitors for microelectronic devices.

U2 - 10.1063/1.5026180

DO - 10.1063/1.5026180

M3 - Article

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

M1 - 202904

ER -