Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling

Research output: Contribution to journalArticle

Authors

  • Gaurav Sahay
  • William Querbes
  • Christopher Alabi
  • Ahmed Eltoukhy
  • Christopher Zurenko
  • Emmanouil Karagiannis
  • Kevin Love
  • Delai Chen
  • Roberto Zoncu
  • Yosef Buganim
  • Avi Schroeder
  • Robert Langer
  • Daniel G Anderson

Colleges, School and Institutes

Abstract

Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.

Details

Original languageEnglish
Pages (from-to)653-8
Number of pages6
JournalNature Biotechnology
Volume31
Issue number7
Publication statusPublished - Jul 2013

Keywords

  • Carrier Proteins, Endocytosis, Gene Silencing, Gene Transfer Techniques, Humans, Lipids, Membrane Glycoproteins, Metal Nanoparticles, Microscopy, Confocal, RNA, Small Interfering, Signal Transduction, TOR Serine-Threonine Kinases