Effects of short-term exposure to particulate matter air pollution on cognitive performance

Research output: Contribution to journalArticlepeer-review

Standard

Effects of short-term exposure to particulate matter air pollution on cognitive performance. / Shehab, M A; Pope, F D.

In: Scientific Reports, Vol. 9, No. 1, 8237, 03.06.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{ea375c71c0074e42bf965017ee69743f,
title = "Effects of short-term exposure to particulate matter air pollution on cognitive performance",
abstract = "This paper assesses the effect of short-term exposure to particulate matter (PM) air pollution on human cognitive performance via a double cross over experimental design. Two distinct experiments were performed, both of which exposed subjects to low and high concentrations of PM. Firstly, subjects completed a series of cognitive tests after being exposed to low ambient indoor PM concentrations and elevated PM concentrations generated via candle burning, which is a well-known source of PM. Secondly, a different cohort underwent cognitive tests after being exposed to low ambient indoor PM concentrations and elevated ambient outdoor PM concentrations via commuting on or next to roads. Three tests were used to assess cognitive performance: Mini-Mental State Examination (MMSE), the Stroop Color and Word test, and Ruff 2 & 7 test. The results from the MMSE test showed a statistically robust decline in cognitive function after exposure to both the candle burning and outdoor commuting compared to ambient indoor conditions. The similarity in the results between the two experiments suggests that PM exposure is the cause of the short-term cognitive decline observed in both. The outdoor commuting experiment also showed a statistically significant short-term cognitive decline in automatic detection speed from the Ruff 2 and 7 selective attention test. The other cognitive tests, for both the candle and commuting experiments, showed no statistically significant difference between the high and low PM exposure conditions. The findings from this study are potentially far reaching; they suggest that elevated PM pollution levels significantly affect short term cognition. This implies average human cognitive ability will vary from city to city and country to country as a function of PM air pollution exposure.",
author = "Shehab, {M A} and Pope, {F D}",
year = "2019",
month = jun,
day = "3",
doi = "10.1038/s41598-019-44561-0",
language = "English",
volume = "9",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Effects of short-term exposure to particulate matter air pollution on cognitive performance

AU - Shehab, M A

AU - Pope, F D

PY - 2019/6/3

Y1 - 2019/6/3

N2 - This paper assesses the effect of short-term exposure to particulate matter (PM) air pollution on human cognitive performance via a double cross over experimental design. Two distinct experiments were performed, both of which exposed subjects to low and high concentrations of PM. Firstly, subjects completed a series of cognitive tests after being exposed to low ambient indoor PM concentrations and elevated PM concentrations generated via candle burning, which is a well-known source of PM. Secondly, a different cohort underwent cognitive tests after being exposed to low ambient indoor PM concentrations and elevated ambient outdoor PM concentrations via commuting on or next to roads. Three tests were used to assess cognitive performance: Mini-Mental State Examination (MMSE), the Stroop Color and Word test, and Ruff 2 & 7 test. The results from the MMSE test showed a statistically robust decline in cognitive function after exposure to both the candle burning and outdoor commuting compared to ambient indoor conditions. The similarity in the results between the two experiments suggests that PM exposure is the cause of the short-term cognitive decline observed in both. The outdoor commuting experiment also showed a statistically significant short-term cognitive decline in automatic detection speed from the Ruff 2 and 7 selective attention test. The other cognitive tests, for both the candle and commuting experiments, showed no statistically significant difference between the high and low PM exposure conditions. The findings from this study are potentially far reaching; they suggest that elevated PM pollution levels significantly affect short term cognition. This implies average human cognitive ability will vary from city to city and country to country as a function of PM air pollution exposure.

AB - This paper assesses the effect of short-term exposure to particulate matter (PM) air pollution on human cognitive performance via a double cross over experimental design. Two distinct experiments were performed, both of which exposed subjects to low and high concentrations of PM. Firstly, subjects completed a series of cognitive tests after being exposed to low ambient indoor PM concentrations and elevated PM concentrations generated via candle burning, which is a well-known source of PM. Secondly, a different cohort underwent cognitive tests after being exposed to low ambient indoor PM concentrations and elevated ambient outdoor PM concentrations via commuting on or next to roads. Three tests were used to assess cognitive performance: Mini-Mental State Examination (MMSE), the Stroop Color and Word test, and Ruff 2 & 7 test. The results from the MMSE test showed a statistically robust decline in cognitive function after exposure to both the candle burning and outdoor commuting compared to ambient indoor conditions. The similarity in the results between the two experiments suggests that PM exposure is the cause of the short-term cognitive decline observed in both. The outdoor commuting experiment also showed a statistically significant short-term cognitive decline in automatic detection speed from the Ruff 2 and 7 selective attention test. The other cognitive tests, for both the candle and commuting experiments, showed no statistically significant difference between the high and low PM exposure conditions. The findings from this study are potentially far reaching; they suggest that elevated PM pollution levels significantly affect short term cognition. This implies average human cognitive ability will vary from city to city and country to country as a function of PM air pollution exposure.

U2 - 10.1038/s41598-019-44561-0

DO - 10.1038/s41598-019-44561-0

M3 - Article

C2 - 31160655

VL - 9

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 8237

ER -