Effect of bud scars on the mechanical properties of Saccharomyces cerevisiae cell walls

R.D. Chaudhari, J.D. Stenson, T.W. Overton, Colin Thomas

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
393 Downloads (Pure)

Abstract

To determine the effect of bud scars on the mechanical properties of the walls of Saccharomyces cerevisiae cells, freshly cultivated stationary phase cells stained with Alexa Fluor 488 conjugated wheat germ agglutinin were sorted according to the number of bud scars using fluorescence-activated cell sorting (FACS). The groups were daughter cells with no bud scars, and mother cells separated further by number of scars (one, two and more than two). Cells with more than three scars were very rare.Compression testing by micromanipulation was used to determine key mechanical properties of the sorted cells. For all cells the force and fractional deformation at bursting could be determined. For 69% of cells overall but only 32% of daughter cells, a large strain mathematical model using a linear elastic constitutive equation for the wall material could be fitted to force deformation data up to cell wall failure. For these cells, the wall surface modulus, elastic modulus, initial stretch ratio and strain energy per unit volume at bursting could be estimated. For the remainder of the cells, the lack of permanent deformation on repeated compression and release (at deformations not causing bursting) suggested the cell wall material was non-linear elastic but with no observable plastic behaviour.This is the first report to show directly that bud scars affect the global mechanical properties of yeast cells and that the important distinction with respect to scars is between daughter and mother cells. The former were smaller with more elastic walls and a higher mean initial stretch ratio. For cells for which the model could be fitted, the mean circumferential strain at bursting decreased with scarring (consistent with stiffer walls) whilst the stress increased. This may be due to the reported absence of chitin in the walls of daughter cells.
Original languageEnglish
Pages (from-to)188-196
Number of pages9
JournalChemical Engineering Science
Volume84
Early online date24 Aug 2012
DOIs
Publication statusPublished - 24 Dec 2012

Keywords

  • Cellular biology and engineering
  • Mathematical modelling
  • Elasticity
  • Yeast
  • Alexa Fluor 488 wheat germ agglutinin
  • Fluorescence activated cell sorting

Fingerprint

Dive into the research topics of 'Effect of bud scars on the mechanical properties of Saccharomyces cerevisiae cell walls'. Together they form a unique fingerprint.

Cite this