Diesel flame lift-off stabilization in the presence of laser-ignition: a numerical study

Research output: Contribution to journalArticlepeer-review

Authors

Colleges, School and Institutes

External organisations

  • Lunds Universitet

Abstract

Diesel flame lift-off and stabilization in the presence of laser-ignition were numerically investigated with the method of Eulerian stochastic fields. The aim was to scrutinise the interaction between the lifted diesel flame and an ignition kernel upstream of the lifted flame. The numerical simulation was carried out in a constant-volume combustion vessel with n-heptane as fuel. The process was studied previously in an experiment employing Diesel #2 as the fuel in the same combustion vessel. In the experiment a lifted flame was first established at a position downstream of the nozzle. An ignition kernel was then initiated using a high-energy pulse laser at a position upstream of the natural lift-off position of the diesel flame. The laser-ignition kernel was modelled using a high-temperature (∼2000 K) hot spot. In both experiment and simulations the upstream front of the ignition kernel was shown to remain around the initial laser ignition site for a substantially long period of time, while the downstream front of the ignition kernel propagates rapidly towards the natural lift-off position downstream of the laser ignition site. The lift-off position oscillated before the final stabilization at the natural lift-off position. The structures and the propagation speed of the reaction fronts in the laser-ignition kernel and the main flame were analysed. Two different stabilization mechanisms, the auto-ignition mechanism and the flame propagation mechanism, were identified for the naturally lifted flame and the laser-induced reaction front, respectively. A mechanism was proposed to explain the oscillation of the lift-off position.

Details

Original languageEnglish
Pages (from-to)696-713
Number of pages18
JournalCombustion Theory and Modelling
Volume19
Issue number6
Publication statusPublished - 2 Nov 2015

Keywords

  • auto-ignition, diesel combustion, Eulerian stochastic fields method, flame stabilization, laser ignition