Dealing with Multiple Classes in Online Class Imbalance Learning

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Colleges, School and Institutes

Abstract

Online class imbalance learning deals with data streams having very skewed class distributions in a timely fashion. Although a few methods have been proposed to handle such problems, most of them focus on two-class cases. Multi-class imbalance imposes additional challenges in learning. This paper studies the combined challenges posed by multi-class imbalance and online learning, and aims at a more effective and adaptive solution. First, we introduce two resampling-based ensemble methods, called MOOB and MUOB, which can process multi-class data directly and strictly online with an adaptive sampling rate. Then, we look into the impact of multi-minority and multi-majority cases on MOOB and MUOB in comparison to other methods under stationary and dynamic scenarios. Both multi-minority and multi-majority make a negative impact. MOOB shows the best and most stable G-mean in most stationary and dynamic cases.

Details

Original languageEnglish
Title of host publicationProceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI)
Publication statusPublished - 15 Jul 2016