Cutting the first 'teeth': a new approach to functional analysis of conodont elements

Research output: Contribution to journalArticlepeer-review

Authors

Abstract

The morphological disparity of conodont elements rivals the dentition of all other vertebrates, yet relatively little is known about their functional diversity. Nevertheless, conodonts are an invaluable resource for testing the generality of functional principles derived from vertebrate teeth, and for exploring convergence in a range of food-processing structures. In a few derived conodont taxa, occlusal patterns have been used to derive functional models. However, conodont elements commonly and primitively exhibit comparatively simple coniform morphologies, functional analysis of which has not progressed much beyond speculation based on analogy. We have generated high-resolution tomographic data for each morphotype of the coniform conodont Panderodus acostatus. Using virtual cross sections, it has been possible to characterize changes in physical properties associated with individual element morphology. Subtle changes in cross-sectional profile have profound implications for the functional performance of individual elements and the apparatus as a whole. This study has implications beyond the ecology of a single conodont taxon. It provides a basis for reinterpreting coniform conodont taxonomy (which is based heavily on cross-sectional profiles), in terms of functional performance and ecology, shedding new light on the conodont fossil record. This technique can also be applied to more derived conodont morphologies, as well as analogous dentitions in other vertebrates and invertebrates.

Details

Original languageEnglish
Article number20131524
JournalRoyal Society of London. Proceedings B. Biological Sciences
Volume280
Issue number1768
Early online date14 Aug 2013
Publication statusPublished - 7 Oct 2013

Keywords

  • vertebrata, Conodonta, Panderodus, function, second moment of inertia