Crosslinked internal alkyne-based stereo elastomers: polymers with tunable mechanical properties

Research output: Contribution to journalArticlepeer-review

Authors

Colleges, School and Institutes

External organisations

  • Duke University
  • University of Akron

Abstract

New methods to introduce and control polymer network crosslinking and improve mechanical properties of the resulting materials have been investigated extensively. Common methods to enhance the mechanical properties of elastomers include “vulcanization” by which polymer chains are covalently crosslinked. In this work, we outline a new method to crosslink well-defined, synthetic elastomers using “click” reactions. Specifically, 2-butyne-1,4-diyl dipropiolate which possesses both external and internal alkynes, was synthesized as a functional monomer and copolymerized with dithiols to yield a series of elastomeric materials possessing variations in cis stereochemistry. Notably, the glass-transition temperature and mechanical properties of the resulting copolymers can be tuned by changing the stoichiometry between 2-butyne-1,4-diyl dipropiolate and 1,3-propane diyl dipropiolate. The alkyne functionalities within the backbone allow for post-polymerization interchain crosslinking to form polymer networks using a ruthenium-catalyzed azide–alkyne cycloaddition. Hysteresis tests have shown that tensile modulus and recovery can be controlled by the density of the crosslinking within the network.

Bibliographic note

Funding Information: The authors gratefully acknowledge financial support from the W. Gerald Austen Endowed Chair in Polymer Science and Polymer Engineering. Mass spectrometry was performed by Selim Gerislioglu in the laboratory of Dr. Chrys Wesdemiotis at The University of Akron Mass Spectrometry Center. Publisher Copyright: © 2021 American Chemical Society.

Details

Original languageEnglish
Pages (from-to)4649–4657
Number of pages9
JournalMacromolecules
Volume54
Issue number10
Early online date14 May 2021
Publication statusPublished - 25 May 2021

Keywords

  • click reaction, Glass transition temperature, elastomeric materials, alkyne