Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis

Research output: Contribution to journalArticlepeer-review

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{002225c6b9a3452f9d3df4a5b44b699d,
title = "Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis",
abstract = "Railway pantographs are used around the world for collecting electrical energy to power railway vehicles from the overhead catenary. Faults in the pantograph system degrade the quality of the contact between the pantograph and catenary and reduce the reliability of railway operations. To maintain the pantographs in a good working condition, regular inspection tasks are carried out at rolling stock depots. The current pantograph inspections, in general, are only effective for the detection of major faults, providing limited incipient fault detection or fault diagnosis capabilities. Condition monitoring of pantographs has the potential to improve pantograph performance and reduce maintenance costs. As a first step in the realisation of practical pantograph condition monitoring, a laboratory-based pantograph test rig has been developed to gain an understanding of pantograph dynamic behaviours, particularly when incipient faults are present. In the first work of this kind, dynamic response data have been acquired from a number of pantographs that have allowed fault detection and diagnosis algorithms to be developed and verified. Three tests have been developed: (i) a hysteresis test that uses different excitation speeds, (ii) a frequency response test that uses different excitation frequencies, and (iii) a novel changing gradient test. Verification tests indicate that the hysteresis test is effective in detecting and diagnosing pneumatic actuator and elbow joint faults. The frequency response test is able to monitor the overall degradation in the pantograph. The changing gradient test provides fault detection and diagnosis in the pantograph head suspension and pneumatic actuator. The test rig and fault detection and diagnosis algorithms are now being developed into a depot-based prototype together with a number of industrial partners.",
keywords = "pantograph, condition monitoring, dynamic behaviour, fault diagnosis",
author = "Tingyu Xin and Clive Roberts and Paul Weston and Edward Stewart",
year = "2018",
month = sep,
day = "19",
doi = "10.1177/0954409718800567",
language = "English",
journal = "Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit",
issn = "0954-4097",
publisher = "SAGE Publications",

}

RIS

TY - JOUR

T1 - Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis

AU - Xin, Tingyu

AU - Roberts, Clive

AU - Weston, Paul

AU - Stewart, Edward

PY - 2018/9/19

Y1 - 2018/9/19

N2 - Railway pantographs are used around the world for collecting electrical energy to power railway vehicles from the overhead catenary. Faults in the pantograph system degrade the quality of the contact between the pantograph and catenary and reduce the reliability of railway operations. To maintain the pantographs in a good working condition, regular inspection tasks are carried out at rolling stock depots. The current pantograph inspections, in general, are only effective for the detection of major faults, providing limited incipient fault detection or fault diagnosis capabilities. Condition monitoring of pantographs has the potential to improve pantograph performance and reduce maintenance costs. As a first step in the realisation of practical pantograph condition monitoring, a laboratory-based pantograph test rig has been developed to gain an understanding of pantograph dynamic behaviours, particularly when incipient faults are present. In the first work of this kind, dynamic response data have been acquired from a number of pantographs that have allowed fault detection and diagnosis algorithms to be developed and verified. Three tests have been developed: (i) a hysteresis test that uses different excitation speeds, (ii) a frequency response test that uses different excitation frequencies, and (iii) a novel changing gradient test. Verification tests indicate that the hysteresis test is effective in detecting and diagnosing pneumatic actuator and elbow joint faults. The frequency response test is able to monitor the overall degradation in the pantograph. The changing gradient test provides fault detection and diagnosis in the pantograph head suspension and pneumatic actuator. The test rig and fault detection and diagnosis algorithms are now being developed into a depot-based prototype together with a number of industrial partners.

AB - Railway pantographs are used around the world for collecting electrical energy to power railway vehicles from the overhead catenary. Faults in the pantograph system degrade the quality of the contact between the pantograph and catenary and reduce the reliability of railway operations. To maintain the pantographs in a good working condition, regular inspection tasks are carried out at rolling stock depots. The current pantograph inspections, in general, are only effective for the detection of major faults, providing limited incipient fault detection or fault diagnosis capabilities. Condition monitoring of pantographs has the potential to improve pantograph performance and reduce maintenance costs. As a first step in the realisation of practical pantograph condition monitoring, a laboratory-based pantograph test rig has been developed to gain an understanding of pantograph dynamic behaviours, particularly when incipient faults are present. In the first work of this kind, dynamic response data have been acquired from a number of pantographs that have allowed fault detection and diagnosis algorithms to be developed and verified. Three tests have been developed: (i) a hysteresis test that uses different excitation speeds, (ii) a frequency response test that uses different excitation frequencies, and (iii) a novel changing gradient test. Verification tests indicate that the hysteresis test is effective in detecting and diagnosing pneumatic actuator and elbow joint faults. The frequency response test is able to monitor the overall degradation in the pantograph. The changing gradient test provides fault detection and diagnosis in the pantograph head suspension and pneumatic actuator. The test rig and fault detection and diagnosis algorithms are now being developed into a depot-based prototype together with a number of industrial partners.

KW - pantograph

KW - condition monitoring

KW - dynamic behaviour

KW - fault diagnosis

U2 - 10.1177/0954409718800567

DO - 10.1177/0954409718800567

M3 - Article

JO - Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit

JF - Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit

SN - 0954-4097

ER -