Comparable rates of integrated myofibrillar protein synthesis between endurance-trained master athletes and untrained older individuals

Research output: Contribution to journalArticlepeer-review

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{6084802be3584f2f9b96bc2ec91a807b,
title = "Comparable rates of integrated myofibrillar protein synthesis between endurance-trained master athletes and untrained older individuals",
abstract = "Background: An impaired muscle anabolic response to exercise and protein nutrition is thought to underpin age-related muscle loss, which may be exacerbated by aspects of biological aging that may not be present in older individuals who have undertaken long-term high-level exercise training, or master athletes (MA). The aim of this study was to compare rested-state and exercise-induced rates of integrated myofibrillar protein synthesis (iMyoPS) and intracellular signaling in endurance trained MA and healthy age-matched untrained individuals (Older Controls). Methods: In a parallel study design, iMyoPS rates were determined over 48 h in the rested-state and following a bout of unaccustomed resistance exercise (RE) in OC (n = 8 males; 73.5 ± 3.3 years) and endurance-trained MA (n = 7 males; 68.9 ± 5.7 years). Intramuscular anabolic signaling was also determined. During the iMyoPS measurement period, physical activity was monitored via accelerometry and dietary intake was controlled. Results: Anthropometrics, habitual activity, and dietary intake were similar between groups. There was no difference in rested-state rates of iMyoPS between OC (1.47 ± 0.06%·day −1 ) and MA (1.46 ± 0.08%·day −1 ). RE significantly increased iMyoPS above rest in both OC (1.60 ± 0.08%·day −1, P < 0.01) and MA (1.61 ± 0.08%·day −1, P < 0.01), with no difference between groups. Akt Thr308 phosphorylation increased at 1 h post-RE in OC (P < 0.05), but not MA. No other between-group differences in intramuscular signaling were apparent at any time-point. Conclusion: While our sample size is limited, these data suggest that rested-state and RE-induced iMyoPS are indistinguishable between MA and OC. Importantly, the OC retain a capacity for RE-induced stimulation of skeletal muscle remodeling. ",
keywords = "Anabolism, Master athlete, Muscle, Resistance exercise, Sarcopenia",
author = "James McKendry and Brandon Shad and Benoit Smeuninx and Oikawa, {Sara Y.} and Gareth Wallis and Carolyn Greig and Stuart Phillips and Leigh Breen",
year = "2019",
month = aug,
day = "30",
doi = "10.3389/fphys.2019.01084",
language = "English",
volume = "10",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers",

}

RIS

TY - JOUR

T1 - Comparable rates of integrated myofibrillar protein synthesis between endurance-trained master athletes and untrained older individuals

AU - McKendry, James

AU - Shad, Brandon

AU - Smeuninx, Benoit

AU - Oikawa, Sara Y.

AU - Wallis, Gareth

AU - Greig, Carolyn

AU - Phillips, Stuart

AU - Breen, Leigh

PY - 2019/8/30

Y1 - 2019/8/30

N2 - Background: An impaired muscle anabolic response to exercise and protein nutrition is thought to underpin age-related muscle loss, which may be exacerbated by aspects of biological aging that may not be present in older individuals who have undertaken long-term high-level exercise training, or master athletes (MA). The aim of this study was to compare rested-state and exercise-induced rates of integrated myofibrillar protein synthesis (iMyoPS) and intracellular signaling in endurance trained MA and healthy age-matched untrained individuals (Older Controls). Methods: In a parallel study design, iMyoPS rates were determined over 48 h in the rested-state and following a bout of unaccustomed resistance exercise (RE) in OC (n = 8 males; 73.5 ± 3.3 years) and endurance-trained MA (n = 7 males; 68.9 ± 5.7 years). Intramuscular anabolic signaling was also determined. During the iMyoPS measurement period, physical activity was monitored via accelerometry and dietary intake was controlled. Results: Anthropometrics, habitual activity, and dietary intake were similar between groups. There was no difference in rested-state rates of iMyoPS between OC (1.47 ± 0.06%·day −1 ) and MA (1.46 ± 0.08%·day −1 ). RE significantly increased iMyoPS above rest in both OC (1.60 ± 0.08%·day −1, P < 0.01) and MA (1.61 ± 0.08%·day −1, P < 0.01), with no difference between groups. Akt Thr308 phosphorylation increased at 1 h post-RE in OC (P < 0.05), but not MA. No other between-group differences in intramuscular signaling were apparent at any time-point. Conclusion: While our sample size is limited, these data suggest that rested-state and RE-induced iMyoPS are indistinguishable between MA and OC. Importantly, the OC retain a capacity for RE-induced stimulation of skeletal muscle remodeling.

AB - Background: An impaired muscle anabolic response to exercise and protein nutrition is thought to underpin age-related muscle loss, which may be exacerbated by aspects of biological aging that may not be present in older individuals who have undertaken long-term high-level exercise training, or master athletes (MA). The aim of this study was to compare rested-state and exercise-induced rates of integrated myofibrillar protein synthesis (iMyoPS) and intracellular signaling in endurance trained MA and healthy age-matched untrained individuals (Older Controls). Methods: In a parallel study design, iMyoPS rates were determined over 48 h in the rested-state and following a bout of unaccustomed resistance exercise (RE) in OC (n = 8 males; 73.5 ± 3.3 years) and endurance-trained MA (n = 7 males; 68.9 ± 5.7 years). Intramuscular anabolic signaling was also determined. During the iMyoPS measurement period, physical activity was monitored via accelerometry and dietary intake was controlled. Results: Anthropometrics, habitual activity, and dietary intake were similar between groups. There was no difference in rested-state rates of iMyoPS between OC (1.47 ± 0.06%·day −1 ) and MA (1.46 ± 0.08%·day −1 ). RE significantly increased iMyoPS above rest in both OC (1.60 ± 0.08%·day −1, P < 0.01) and MA (1.61 ± 0.08%·day −1, P < 0.01), with no difference between groups. Akt Thr308 phosphorylation increased at 1 h post-RE in OC (P < 0.05), but not MA. No other between-group differences in intramuscular signaling were apparent at any time-point. Conclusion: While our sample size is limited, these data suggest that rested-state and RE-induced iMyoPS are indistinguishable between MA and OC. Importantly, the OC retain a capacity for RE-induced stimulation of skeletal muscle remodeling.

KW - Anabolism

KW - Master athlete

KW - Muscle

KW - Resistance exercise

KW - Sarcopenia

UR - http://www.scopus.com/inward/record.url?scp=85072108249&partnerID=8YFLogxK

U2 - 10.3389/fphys.2019.01084

DO - 10.3389/fphys.2019.01084

M3 - Article

C2 - 31543824

VL - 10

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

M1 - 1084

ER -