Centralized and distributed food manufacture: A modeling platform for technological, environmental and economic assessment at different production scales

Research output: Contribution to journalArticlepeer-review

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{6c44d36eecde4d13bed3777e804bc0f9,
title = "Centralized and distributed food manufacture: A modeling platform for technological, environmental and economic assessment at different production scales",
abstract = "Centralized manufacturing methods have been increasingly implemented in the food manufacturing sector. Proving to be more cost-efficient in terms of production, centralization also involves rigid and lengthy supply chains with high environmental and cost impacts. Distributed manufacturing, based on local production at small scale, represents an alternative that could provide flexibility to the currently established centralized supply chains, together with environmental and social benefits. A modeling tool for process design, evaluation and comparison of different centralized and decentralized manufacturing scenarios, both in economic and environmental terms, is presented in this work. The production of a dried food product (cereal baby porridge)has been chosen as a case study. Three decentralized – (i)Home Manufacturing (HM), (ii)Food Incubator (FI), (iii)Distributed Manufacturing (DM)– and two centralized – (iv)Single Plant (SP)and (v)Multi-plant (MP)– production scales were evaluated for throughput values ranging from 0.5 kg/h to 6000 kg/h, and different operational regions (i.e. unfeasible, transition and plateau)were identified for each scale. A production scenario using UK dry baby food demand was also studied. The most decentralized scales (HM and FI)become profitable (i.e. production cost below market prices)at very low production rates (e.g. 1 kg/h)that industrial manufacturing (showing a lower boundary for SP profitability at 200 kg/h)cannot achieve. HM and FI remain competitive to SP at national demands such as UK dimension — HM has a cost just 1% higher. DM scenarios require low management costs to represent an efficient alternative to SP. Finally, for equal power source, decentralized manufacture does not imply saving in energy or greenhouse gases emissions (GHG)but demand more manpower.",
keywords = "decentralization, distributed food manufacture, energy demand, carbon footprint, scale-down",
author = "{Almena Ruiz}, Alberto and Peter Fryer and Serafim Bakalis and Estefania Lopez-Quiroga",
year = "2019",
month = jul,
doi = "10.1016/j.spc.2019.03.001",
language = "English",
volume = "19",
pages = "181--193",
journal = "Sustainable Production and Consumption",
issn = "2352-5509",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Centralized and distributed food manufacture

T2 - A modeling platform for technological, environmental and economic assessment at different production scales

AU - Almena Ruiz, Alberto

AU - Fryer, Peter

AU - Bakalis, Serafim

AU - Lopez-Quiroga, Estefania

PY - 2019/7

Y1 - 2019/7

N2 - Centralized manufacturing methods have been increasingly implemented in the food manufacturing sector. Proving to be more cost-efficient in terms of production, centralization also involves rigid and lengthy supply chains with high environmental and cost impacts. Distributed manufacturing, based on local production at small scale, represents an alternative that could provide flexibility to the currently established centralized supply chains, together with environmental and social benefits. A modeling tool for process design, evaluation and comparison of different centralized and decentralized manufacturing scenarios, both in economic and environmental terms, is presented in this work. The production of a dried food product (cereal baby porridge)has been chosen as a case study. Three decentralized – (i)Home Manufacturing (HM), (ii)Food Incubator (FI), (iii)Distributed Manufacturing (DM)– and two centralized – (iv)Single Plant (SP)and (v)Multi-plant (MP)– production scales were evaluated for throughput values ranging from 0.5 kg/h to 6000 kg/h, and different operational regions (i.e. unfeasible, transition and plateau)were identified for each scale. A production scenario using UK dry baby food demand was also studied. The most decentralized scales (HM and FI)become profitable (i.e. production cost below market prices)at very low production rates (e.g. 1 kg/h)that industrial manufacturing (showing a lower boundary for SP profitability at 200 kg/h)cannot achieve. HM and FI remain competitive to SP at national demands such as UK dimension — HM has a cost just 1% higher. DM scenarios require low management costs to represent an efficient alternative to SP. Finally, for equal power source, decentralized manufacture does not imply saving in energy or greenhouse gases emissions (GHG)but demand more manpower.

AB - Centralized manufacturing methods have been increasingly implemented in the food manufacturing sector. Proving to be more cost-efficient in terms of production, centralization also involves rigid and lengthy supply chains with high environmental and cost impacts. Distributed manufacturing, based on local production at small scale, represents an alternative that could provide flexibility to the currently established centralized supply chains, together with environmental and social benefits. A modeling tool for process design, evaluation and comparison of different centralized and decentralized manufacturing scenarios, both in economic and environmental terms, is presented in this work. The production of a dried food product (cereal baby porridge)has been chosen as a case study. Three decentralized – (i)Home Manufacturing (HM), (ii)Food Incubator (FI), (iii)Distributed Manufacturing (DM)– and two centralized – (iv)Single Plant (SP)and (v)Multi-plant (MP)– production scales were evaluated for throughput values ranging from 0.5 kg/h to 6000 kg/h, and different operational regions (i.e. unfeasible, transition and plateau)were identified for each scale. A production scenario using UK dry baby food demand was also studied. The most decentralized scales (HM and FI)become profitable (i.e. production cost below market prices)at very low production rates (e.g. 1 kg/h)that industrial manufacturing (showing a lower boundary for SP profitability at 200 kg/h)cannot achieve. HM and FI remain competitive to SP at national demands such as UK dimension — HM has a cost just 1% higher. DM scenarios require low management costs to represent an efficient alternative to SP. Finally, for equal power source, decentralized manufacture does not imply saving in energy or greenhouse gases emissions (GHG)but demand more manpower.

KW - decentralization

KW - distributed food manufacture

KW - energy demand

KW - carbon footprint

KW - scale-down

UR - http://www.scopus.com/inward/record.url?scp=85064803655&partnerID=8YFLogxK

U2 - 10.1016/j.spc.2019.03.001

DO - 10.1016/j.spc.2019.03.001

M3 - Article

VL - 19

SP - 181

EP - 193

JO - Sustainable Production and Consumption

JF - Sustainable Production and Consumption

SN - 2352-5509

ER -