Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming

Martin Khzouz, Shangfeng Du, Joseph Wood, Evangelos Gkanas

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)
237 Downloads (Pure)

Abstract

This work investigates the catalytic performance of bimetallic Ni-Cu/Al2O3 catalysts for syngas production by methanol steam reforming. The synthesis and characterization of a series of Nix-Cuy/Al2O3 catalysts with various stoichiometric fractions (x=10, 7, 5, 3 and 0 wt% and y=0, 3, 5, 7 and 10 wt% to Al2O3 support, respectively) are investigated and discussed. The catalytic performance is evaluated experimentally at temperature range of 225–325 °C. Both mono-metallic catalyst (10wt%Cu/Al2O3 and 10wt%Ni/Al2O3) and bi-metallic catalysts (7wt %Cu-3wt%Ni/Al2O3, 5wt%Cu-5wt%Ni/Al2O3 and 3wt%Cu-7wt%Ni/Al2O3) are synthesized using an impregnation method and characterized by means of SEM, temperature programmed reduction (TPR), BET analysis, XRD and TGA. It is found that the bimetallic Ni-Cu catalyst had a strong influence on the amount of CO2 and CO produced due to the different selectivity towards the water gas shift reaction and methanol decomposition reaction. The increase of the Ni content leads to an increase in CO and decrease in CO2 yields. The bimetallic catalyst did not produce CH4, revealing that Cu alloying in Ni catalyst had an inhibiting effect for CO and/or CO2 hydrogenation.
Original languageEnglish
Pages (from-to)672-683
Number of pages12
JournalFuel
Volume232
Early online date14 Jun 2018
DOIs
Publication statusPublished - 15 Nov 2018

Keywords

  • Syngas production
  • Methanol steam reforming
  • methanol reforming catalyst
  • Ni-Cu/Al2O3
  • Characterisation
  • Steam reformer

Fingerprint

Dive into the research topics of 'Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming'. Together they form a unique fingerprint.

Cite this