Binary black hole mergers in the first Advanced LIGO observing run

Research output: Contribution to journalArticlepeer-review

Authors

  • LIGO Scientific Collaboration
  • Virgo Collaboration

Colleges, School and Institutes

External organisations

  • California Institute of Technology
  • Louisiana State University
  • American University
  • Universita degli Studi di Salerno
  • Complesso Universitario di Monte S.Angelo
  • University of Florida
  • LIGO Livingston Observatory
  • LAPP, Université de Savoie, CNRS/IN2P3
  • University of Sannio at Benevento
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1, D-14476 Potsdam, Germany
  • Institution Nikhef National Institute for Subatomic Physics
  • Massachusetts Institute of Technology
  • Instituto Nacional de Pesquisas Espaciais
  • Department of Physics and Astronomy and INFN
  • Inter-University Centre for Astronomy and Astrophysics India
  • Tata Institute of Fundamental Research
  • University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
  • Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Università di Pisa
  • Sezione INFN di Pisa
  • The Australian National University
  • University of Mississippi
  • California State University Fullerton
  • IN2P3
  • Chennai Mathematical Institute
  • University of Rome Tor Vergata

Abstract

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M· and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5s over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several highorder post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc -3 yr -1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.

Bibliographic note

Binary Black Hole Mergers in the First Advanced LIGO Observing Run B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. X 6, 041015 – Published 21 October 2016

Details

Original languageEnglish
Article number041015
Number of pages36
JournalPhysical Review X
Volume6
Issue number4
Publication statusPublished - 21 Oct 2016

ASJC Scopus subject areas