Behaviour of traffic emitted semi-volatile and intermediate volatility organic compounds within the urban atmosphere

Ruixin Xu, Mohammed S. Alam, Christopher Stark, Roy M. Harrison*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
225 Downloads (Pure)

Abstract

Particulate matter originated from traffic has attracted major interest over the last few years. The semi-volatile organic component of the particles may evaporate with dispersion away from the emission source, creating vapour which may oxidise to form secondary organic aerosol. Air samples were collected from a street canyon, the adjacent park and an urban background site during the winter-spring period in central London, UK. Emissions of semi-volatile organic compounds (SVOCs) and intermediate volatility organic compounds (IVOCs) ranging from C10 to C36 in both the gas phase and particle phase were measured by using thermal desorption coupled to comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (TD-GC × GC-ToF-MS). Main compound groups identified and quantified were grouped alkanes (n-alkanes and branched alkanes), monocyclic alkanes, bicyclic alkanes and monocyclic aromatics. The carbon preference index (CPI) of n-alkanes was estimated to distinguish the emission sources. Pearson correlations between I/SVOCs and traffic tracers (black carbon, NOx and benzene) in different locations were compared to analyse the influence of this emission source. The results indicate that while the major emission source at the roadside site is traffic, the lower correlations at background sites are indicative of other source contributions and/or differential reactivity of compounds. Gas-particle phase partitioning of n-alkanes is evaluated and compared between sites. The potential influence of gas phase I/SVOCs upon OH reactivity and secondary organic aerosol (SOA) formation is estimated and found to be relatively small.

Original languageEnglish
Article number137470
Pages (from-to)1-11
Number of pages11
JournalScience of the Total Environment
Volume720
Early online date20 Feb 2020
DOIs
Publication statusPublished - 10 Jun 2020

Keywords

  • alkanes
  • aromatics
  • diesel exhaust
  • intermediate volatility organic compounds
  • semi-volatile organic compounds

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Behaviour of traffic emitted semi-volatile and intermediate volatility organic compounds within the urban atmosphere'. Together they form a unique fingerprint.

Cite this