Avian embryonic development does not change the stable isotope composition of the calcite eggshell

G Maurer, Steven Portugal, Ian Boomer, Phillip Cassey

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

The avian embryo resorbs most of the calcium for bone formation from the calcite eggshell but the exact mechanisms of the resorption are unknown. The present study tested whether this process results in variable fractionation of the oxygen and carbon isotopes in shell calcium carbonate, which could provide a detailed insight into the temporal and spatial use of the eggshell by the developing embryo. Despite the uncertainty regarding changes in stable isotope composition of the eggshell across developmental stages or regions of the shell, eggshells are a popular resource for the analysis of historic and extant trophic relationships. To clarify how the stable isotope composition varies with embryonic development, the δ(13)C and δ(18)O content of the carbonate fraction in shells of black-headed gull (Larus ridibundus) eggs were sampled at four different stages of embryonic development and at five eggshell regions. No consistent relationship between the stable isotope composition of the eggshell and embryonic development, shell region or maculation was observed, although shell thickness decreased with development in all shell regions. By contrast, individual eggs differed significantly in isotope composition. These results establish that eggshells can be used to investigate a species' carbon and oxygen sources, regardless of the egg's developmental stage.
Original languageEnglish
Pages (from-to)339-345
Number of pages7
JournalReproduction Fertility and Development
Volume23
DOIs
Publication statusPublished - 1 Jan 2011

Fingerprint

Dive into the research topics of 'Avian embryonic development does not change the stable isotope composition of the calcite eggshell'. Together they form a unique fingerprint.

Cite this