Automatic detection and spatial clustering of interictal discharges in invasive recordings
Research output: Chapter in Book/Report/Conference proceeding › Chapter
Authors
Colleges, School and Institutes
External organisations
- Motol University Hospital
- Czech Technical University in Prague
Abstract
Interictal epileptiform discharges (spikes) represent electrographic marker of epileptogenic brain tissue. Besides ictal onsets, localization of interictal epileptiform discharges provides additional information to plan resective epilepsy surgery. The main goals of this study were: 1) to develop a reliable automatic algorithm to detect high and low amplitude interictal epileptiform discharges in intracranial EEG recordings and 2) to design a clustering method to extract spatial patterns of their propagation. For detection, we used a signal envelope modeling technique which adaptively identifies statistical parameters of signals containing spikes. Application of this technique to human intracranial EEG data demonstrated that it was superior to expert labeling and it was able to detect even small amplitude interictal epileptiform discharges. In the second task, detected spikes were clustered by principal component analysis according to their spatial distribution. Preliminary results showed that this unsupervised approach is able to identify distinct sources of interictal epileptiform discharges and has the potential to increase the yield of presurgical examination by improved delineation of the irritative zone.
Details
Original language | English |
---|---|
Title of host publication | MeMeA 2013 - IEEE International Symposium on Medical Measurements and Applications, Proceedings |
Publication status | Published - 1 Jan 2013 |