Astrophysical implications of the binary black hole merger GW150914

The LIGO Scientific Collaboration, Alberto Vecchio, Ilya Mandel, Andreas Freise, Walter Del Pozzo, John Veitch, Will Farr, Christopher Berry, Conor Mow-Lowry, Haixing Miao, Carl-Johan Haster, Haoyu Wang, Hannah Middleton, Edward Thomas, Anna Green, Serena Vinciguerra, Daniel Töyrä

Research output: Contribution to journalArticlepeer-review

482 Citations (Scopus)

Abstract

The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (25 M) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (1 Gpc−3 yr−1) from both types of formation models. The low measured redshift (z  0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Original languageEnglish
Article numberL22
Number of pages15
JournalThe Astrophysical Journal
Volume818
Issue number2
DOIs
Publication statusPublished - 11 Feb 2016

Keywords

  • gravitational waves
  • stars: black holes
  • stars: massive

Fingerprint

Dive into the research topics of 'Astrophysical implications of the binary black hole merger GW150914'. Together they form a unique fingerprint.

Cite this