Analysis of time-correlated single photon counting data: a comparative evaluation of deterministic and probabilistic approaches
Research output: Contribution to journal › Article › peer-review
Authors
Colleges, School and Institutes
Abstract
We review various methods for analysing time-resolved fluorescence data acquired using the time-correlated single photon counting method in an attempt to evaluate their benefits and limitations. We have applied these methods to both experimental and simulated data. The relative merits of using deterministic approaches, such as the commonly used iterative reconvolution method, and probabilistic approaches, such as the smoothed exponential series method, the maximum entropy method and recently proposed basis pursuit denoising (compressed sensing) method, are outlined. In particular, we show the value of using multiple methods to arrive at the most appropriate choice of model. We show that the use of probabilistic analysis methods can indicate whether a discrete component or distribution analysis provides the better representation of the data.
Details
Original language | English |
---|---|
Article number | 042001 |
Journal | Methods and Applications in Fluorescence |
Volume | 5 |
Issue number | 4 |
Publication status | Published - 23 Oct 2017 |