An approximate KLD based experimental design for models with intractable likelihoods

Ziqiao Ao, Jinglai Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Data collection is a critical step in statistical inference and data science, and the goal of statistical experimental design (ED) is to find the data collection setup that can provide most information for the inference. In this work we consider a special type of ED problems where the likelihoods are not available in a closed form. In this case, the popular information-theoretic Kullback-Leibler divergence (KLD) based design criterion can not be used directly, as it requires to evaluate the likelihood function. To address the issue, we derive a new utility function, which is a lower bound of the original KLD utility. This lower bound is expressed in terms of the summation of two or more entropies in the data space, and thus can be evaluated efficiently via entropy estimation methods. We provide several numerical examples to demonstrate the performance of the proposed method.
Original languageEnglish
Title of host publicationThe 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)
PublisherProceedings of Machine Learning Research
Volume108
ISBN (Electronic)2640-3498
Publication statusPublished - 3 Jun 2020

Fingerprint

Dive into the research topics of 'An approximate KLD based experimental design for models with intractable likelihoods'. Together they form a unique fingerprint.

Cite this