Age, aerobic fitness, and cerebral perfusion during exercise: role of carbon dioxide

Daniela Flück, Igor D Braz, Stefanie Keiser, Fabienne Hüppin, Thomas Haider, Matthias P Hilty, James P Fisher, Carsten Lundby

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Middle cerebral artery mean velocity (MCAvmean) is attenuated with increasing age both at rest and during exercise. The aim of this study was to determine the influence of the age-dependent reduction in arterial Pco2 (PaCO2) and physical fitness herein. We administered supplemental CO2 (CO2 trial) or no additional gas (control trial) to the inspired air in a blinded and randomized manner, and assessed middle cerebral artery mean flow velocity during graded exercise in 1) 21 young [Y; age 24 ± 3 yr (±SD)] volunteers of whom 11 were trained (YT) and 10 considered untrained (YUT), and 2) 17 old (O; 66 ± 4 yr) volunteers of whom 8 and 9 were considered trained (OT) and untrained (OUT), respectively. A resting hypercapnic reactivity test was also performed. MCAvmean and PaCO2 were lower in O [44.9 ± 3.1 cm/s and 30 ± 1 mmHg (±SE)] compared with Y (59.3 ± 2.3 cm/s and 34 ± 1 mmHg, P < 0.01) at rest, independent of aerobic fitness level. The age-related decreases in MCAvmean and PaCO2 persisted during exercise. Supplemental CO2 reduced the age-associated decline in MCAvmean by 50%, suggesting that PaCO2 is a major component in the decline. On the other hand, relative hypercapnic reactivity was neither influenced by age (P = 0.46) nor aerobic fitness (P = 0.36). Although supplemental CO2 attenuated exercise-induced reduction in cerebral oxygenation (near-infrared spectroscopy), this did not influence exercise performance. In conclusion, PaCO2 contributes to the age-associated decline in MCAvmean at rest and during exercise; however exercise capacity did not diminish this age effect.

Original languageEnglish
Pages (from-to)H515-23
JournalAmerican Journal of Physiology. Heart and Circulatory Physiology
Volume307
Issue number4
DOIs
Publication statusPublished - 15 Aug 2014

Fingerprint

Dive into the research topics of 'Age, aerobic fitness, and cerebral perfusion during exercise: role of carbon dioxide'. Together they form a unique fingerprint.

Cite this