A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

Research output: Contribution to journalArticle

Authors

Colleges, School and Institutes

Abstract

If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified (67)ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The (67)Zn from nano-sized (67)ZnO appears as bioavailable as (67)Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks.

Details

Original languageEnglish
Pages (from-to)79-90
Number of pages12
JournalNanotoxicology
Volume5
Issue number1
Publication statusPublished - 1 Mar 2011