1α,25-dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires VDRnuc-mediated activation of the RAS/RAF/ERK-MAP kinase signalling pathway

Research output: Contribution to journalArticle

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{eca86561a20a44f3bc17076e21d1ceba,
title = "1α,25-dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires VDRnuc-mediated activation of the RAS/RAF/ERK-MAP kinase signalling pathway",
abstract = "1Alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of steroid sulphatase (STS) in myeloid cells [Hughes et al., 2001, 2005]. This was attenuated by inhibitors of phospholipase D (PLD) (n-butanol, 2,3-diphosphoglyceric acid, C(2)-ceramide) and phosphatidate phosphohydrolase (PAP) (propranolol and chlorpromazine), but was unaffected by inhibitors of phospholipase C. The 1alpha,25(OH)(2)D(3)-induced STS activity was also attenuated by inhibitors of protein kinase Calpha and protein kinase Cdelta (Go 6976, HBDDE and rottlerin), but not by an inhibitor of protein kinase Cbeta (LY379196). Additionally, 1alpha,25(OH)(2)D(3)-induced STS activity was attenuated by inhibitors of RAS (manumycin A), RAF (GW5074), MEK (PD098059 and U1026) and JNK (SP600125), but not p38 (PD169316). 1alpha,25(OH)(2)D(3) produced a rapid and long lasting stimulation of the ERK-MAP kinase signalling cascade in HL60 myeloid leukaemic cells. This 'non-genomic' effect of 1alpha,25(OH)(2)D(3) blocked by pharmacological antagonists of nuclear vitamin D receptors (VDR(nuc)) and does not appear to require hetero-dimerisation with the retinoid-X receptor (RXR). Inhibitors of the Src tyrosine kinase (PP1), RAS (manumycin A), RAS-RAF interactions (sulindac sulphide and RAS inhibitory peptide), RAF (GW5074 or chloroquine), and protein kinase Calpha (HBDDE) abrogated the 1alpha,25(OH)(2)D(3)-stimulated increase in ERK-MAP kinase activity. Taken together, these results show that 1alpha,25(OH)(2)D(3)/VDR(nuc) activation of the RAS/RAF/ERK-MAP kinase signalling pathway plays an important role in augmenting STS activity in human myeloid leukaemic cell lines.",
keywords = "myeloid cells, genomic and non-genomic signalling, vitamin D3, steroid sulphatase",
author = "Philip Hughes and Geoffrey Brown",
year = "2006",
month = jun,
day = "1",
doi = "10.1002/jcb.20787",
language = "English",
volume = "98",
pages = "590--617",
journal = "Journal of Cellular Biochemistry",
issn = "0730-2312",
publisher = "Wiley",
number = "3",

}

RIS

TY - JOUR

T1 - 1α,25-dihydroxyvitamin D3-mediated stimulation of steroid sulphatase activity in myeloid leukaemic cell lines requires VDRnuc-mediated activation of the RAS/RAF/ERK-MAP kinase signalling pathway

AU - Hughes, Philip

AU - Brown, Geoffrey

PY - 2006/6/1

Y1 - 2006/6/1

N2 - 1Alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of steroid sulphatase (STS) in myeloid cells [Hughes et al., 2001, 2005]. This was attenuated by inhibitors of phospholipase D (PLD) (n-butanol, 2,3-diphosphoglyceric acid, C(2)-ceramide) and phosphatidate phosphohydrolase (PAP) (propranolol and chlorpromazine), but was unaffected by inhibitors of phospholipase C. The 1alpha,25(OH)(2)D(3)-induced STS activity was also attenuated by inhibitors of protein kinase Calpha and protein kinase Cdelta (Go 6976, HBDDE and rottlerin), but not by an inhibitor of protein kinase Cbeta (LY379196). Additionally, 1alpha,25(OH)(2)D(3)-induced STS activity was attenuated by inhibitors of RAS (manumycin A), RAF (GW5074), MEK (PD098059 and U1026) and JNK (SP600125), but not p38 (PD169316). 1alpha,25(OH)(2)D(3) produced a rapid and long lasting stimulation of the ERK-MAP kinase signalling cascade in HL60 myeloid leukaemic cells. This 'non-genomic' effect of 1alpha,25(OH)(2)D(3) blocked by pharmacological antagonists of nuclear vitamin D receptors (VDR(nuc)) and does not appear to require hetero-dimerisation with the retinoid-X receptor (RXR). Inhibitors of the Src tyrosine kinase (PP1), RAS (manumycin A), RAS-RAF interactions (sulindac sulphide and RAS inhibitory peptide), RAF (GW5074 or chloroquine), and protein kinase Calpha (HBDDE) abrogated the 1alpha,25(OH)(2)D(3)-stimulated increase in ERK-MAP kinase activity. Taken together, these results show that 1alpha,25(OH)(2)D(3)/VDR(nuc) activation of the RAS/RAF/ERK-MAP kinase signalling pathway plays an important role in augmenting STS activity in human myeloid leukaemic cell lines.

AB - 1Alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of steroid sulphatase (STS) in myeloid cells [Hughes et al., 2001, 2005]. This was attenuated by inhibitors of phospholipase D (PLD) (n-butanol, 2,3-diphosphoglyceric acid, C(2)-ceramide) and phosphatidate phosphohydrolase (PAP) (propranolol and chlorpromazine), but was unaffected by inhibitors of phospholipase C. The 1alpha,25(OH)(2)D(3)-induced STS activity was also attenuated by inhibitors of protein kinase Calpha and protein kinase Cdelta (Go 6976, HBDDE and rottlerin), but not by an inhibitor of protein kinase Cbeta (LY379196). Additionally, 1alpha,25(OH)(2)D(3)-induced STS activity was attenuated by inhibitors of RAS (manumycin A), RAF (GW5074), MEK (PD098059 and U1026) and JNK (SP600125), but not p38 (PD169316). 1alpha,25(OH)(2)D(3) produced a rapid and long lasting stimulation of the ERK-MAP kinase signalling cascade in HL60 myeloid leukaemic cells. This 'non-genomic' effect of 1alpha,25(OH)(2)D(3) blocked by pharmacological antagonists of nuclear vitamin D receptors (VDR(nuc)) and does not appear to require hetero-dimerisation with the retinoid-X receptor (RXR). Inhibitors of the Src tyrosine kinase (PP1), RAS (manumycin A), RAS-RAF interactions (sulindac sulphide and RAS inhibitory peptide), RAF (GW5074 or chloroquine), and protein kinase Calpha (HBDDE) abrogated the 1alpha,25(OH)(2)D(3)-stimulated increase in ERK-MAP kinase activity. Taken together, these results show that 1alpha,25(OH)(2)D(3)/VDR(nuc) activation of the RAS/RAF/ERK-MAP kinase signalling pathway plays an important role in augmenting STS activity in human myeloid leukaemic cell lines.

KW - myeloid cells

KW - genomic and non-genomic signalling

KW - vitamin D3

KW - steroid sulphatase

U2 - 10.1002/jcb.20787

DO - 10.1002/jcb.20787

M3 - Article

C2 - 16440327

VL - 98

SP - 590

EP - 617

JO - Journal of Cellular Biochemistry

JF - Journal of Cellular Biochemistry

SN - 0730-2312

IS - 3

ER -