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Littlewood–Richardson coefficients via mirror
symmetry for cluster varieties

Timothy Magee

Abstract

I prove that the full Fock–Goncharov conjecture holds for Conf×3 (F̃�) — the configuration space
of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit
a maximal green sequence for the quiver of the initial seed. I compute the Landau–Ginzburg

potential W on Conf×3 (F̃�)∨ associated to the partial minimal model Conf×3 (F̃�) ⊂ Conf3(F̃�).
The integral points of the associated ‘cone’ Ξ := {WT � 0} ⊂ Conf×3 (F̃�)∨(RT ) parametrize a

basis for O(Conf3(F̃�)) =
⊕

(Vα ⊗ Vβ ⊗ Vγ)G and encode the Littlewood–Richardson coefficients
cγαβ . In the initial seed, the inequalities defining Ξ are exactly the tail positivity conditions of

[18]. I exhibit a unimodular p∗ map that identifies W with the potential of Goncharov–Shen on

Conf×3 (F̃�) [8] and Ξ with the Knutson–Tao hive cone [14].
This paper relies extensively on colour figures. Some references to colour may not be

meaningful in the printed version, and we refer the reader to the online version which includes
the colour figures.
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1. Introduction

1.1. Summary of results

In this paper I obtain polytopes whose number of integral points are the Littlewood–Richardson
coefficients by a method that has essentially nothing to do with representation theory. The
same method will, in theory, produce analogous polytopes whose integral points parametrize
a canonical basis for the space of sections of any line bundle on any Fano variety with a choice
anti-canonical divisor. I prove [12, Corollary 0.21], and recover Corollary 0.20 as well with very
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little additional work†. In particular I recover polytopes parametrizing canonical bases for each
irreducible representation of GLn.

Let G = GLn, let B be the Borel subgroup of upper triangular matrices in G, and
let U be the unipotent radical of B — the subgroup of upper triangular matrices with
diagonal entries all 1. The flag variety F� is isomorphic to G/B, and the decorated flag

variety F̃� — whose points consist of a complete flag X• = (X1 ⊂ · · · ⊂ Xn) together with
a non-zero vector xi in each successive quotient Xi/Xi−1 — is isomorphic to G/U ‡.
Setting H := B/U , F̃� is naturally a principal H-bundle over F�. Next, following [5, 8],
define Conf3(F�) to be G\F�×3 and Conf×3 (F�) to be the affine subvariety where pairs of
flags intersect generically. Define Conf3(F̃�) and Conf×3 (F̃�) analogously — Conf3(F̃�) :=

G\ F̃�×3
and Conf×3 (F̃�) ⊂ Conf3(F̃�) is the generic locus. Just like F̃� → F� is a principal

H-bundle, Conf3(F̃�) is a principal H×3-bundle over Conf3(F�). Moreover, in both cases, the
base is Fano and the total space is the universal torsor for the base. This H×3-bundle has a
very special property:

O
(
Conf3(F̃�)

)
= Cox (Conf3(F�)) :=

⊕
L∈Pic (Conf3(F�))

Γ(Conf3(F�),L).

Each irreducible representation of G can be described as the space of sections of a line bundle
over F�. Similarly, for L ∈ Pic(Conf3(F�)),

Γ(Conf3(F�),L) = (Vα ⊗ Vβ ⊗ Vγ)G

for some triple of weights (α, β, γ), where Vλ denotes the irreducible representation of highest
weight λ. The space Conf3(F̃�) is of interest here because

O
(
Conf3(F̃�)

)
=

⊕
α,β,γ

(Vα ⊗ Vβ ⊗ Vγ)G,

and the dimension of each summand is a Littlewood–Richardson coefficient. See Section 2.1
for details.

The first key result of this paper pertains to the open subvariety Conf×3 (F̃�).

Theorem 1. The full Fock–Goncharov conjecture holds for Conf×3 (F̃�).

The full Fock–Goncharov conjecture [12, Definition 0.6] will be described in detail in the
next Section 1.2. For now, there is a piecewise linear manifold Conf×3 (F̃�)∨(RT ) encoding the
logarithmic geometry of the mirror Conf×3 (F̃�)∨ to Conf×3 (F̃�). Theorem 1 says that its integral
points Conf×3 (F̃�)∨(ZT ) parametrize a canonical basis for O(Conf×3 (F̃�)).

Next observe that Conf3(F̃�) is a partial compactification of Conf×3 (F̃�). This compacti-
fication corresponds to a Landau–Ginzburg potential W on Conf×3 (F̃�)∨. A piecewise linear
analogue of W — its tropicalization WT — yields a subset Ξ := {WT � 0} of Conf×3 (F̃�)∨(RT ),
and so a subset of our basis for O(Conf×3 (F̃�)). Now, both Conf×3 (F̃�) and Conf×3 (F̃�)∨ have
an atlas of algebraic tori, with tori in the two atlases coming in dual pairs. These tori are glued
via birational maps, known as mutations. Choosing a pair of tori identifies Conf×3 (F̃�)∨(RT )
with a real vector space and Ξ with a rational polyhedral cone in this vector space. Under one

†These corollaries in [12] reference the current work and were stated as conjectures until a preliminary version
of this paper was prepared.

‡We say these spaces are isomorphic rather than saying, for example, ‘The flag variety is G/B’ because no
choice of Borel subgroup is necessary to describe the flag variety. The flag variety is isomorphic to G/B for any

choice of Borel subgroup B, and we view F� and F̃� as being free of such choices.
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particularly simple choice of tori, the inequalities defining Ξ are precisely the tail-positivity
conditions of [18]†.

We need one more ingredient to identify Ξ with the Knutson–Tao hive cone of [14]. There is
a class of maps (known as p∗ maps) that in this setting send the cocharacter lattice N of a torus
in Conf×3 (F̃�) to the cocharacter lattice M of the dual torus in Conf×3 (F̃�)∨ and commute with
mutation. Such a map of lattices gives rise to a map of schemes p : Conf×3 (F̃�) → Conf×3 (F̃�)∨‡.

Theorem 2. For a particular pair of dual tori§, the cone Ξ defined by the Landau–

Ginzburg potential W on Conf×3 (F̃�)∨ is precisely the tail-positive cone of [18]. Furthermore,
a particular choice of the map p∗ : N → M identifies W with the potential of Goncharov–Shen

on Conf×3 (F̃�) and Ξ with the Knutson–Tao hive cone.

Note that these identifications are not used to prove any of the combinatorial results in this
paper. Instead, the identifications should be interpreted as placing the tail-positive cone and
the Knutson–Tao hive cone within the broad framework of log Calabi–Yau mirror symmetry.
It is an instance of the mirror construction described, for example, in [12].

The mirror Conf×3 (F̃�)∨ to Conf3(F̃�) comes with a map to the dual torus (H×3)∨,
tropicalizing to a map

w : Conf×3 (F̃�)∨(ZT
) → (

H×3
)∨(

ZT
)
.

The integral tropicalization of a torus T is just its cocharacter lattice χ∗(T ), so (H×3)∨(ZT ) is
the character lattice χ∗(H×3). Theorem 1, together with the existence of an optimized seed for
each frozen variable¶ (Proposition 17) and existence of a unimodular p∗ map (Proposition 24),
implies that points in Ξ(ZT ) := Ξ

⋂
Conf×3 (F̃�)∨(ZT ) are canonically identified with regular

functions on Conf3(F̃�) invariant under the H×3 action. If q ∈ Ξ(ZT ) and ϑq is the corre-
sponding function on Conf3(F̃�), then w(ϑq) is the weight of ϑq under the H×3 action. Given a
weight (α, β, γ) of this action, w−1(α, β, γ)

⋂
Ξ(ZT ) parametrizes a basis for the (α, β, γ)-weight

space of O(Conf3(F̃�)). Since O(Conf3(F̃�)) =
⊕

α,β,γ(Vα ⊗ Vβ ⊗ Vγ)G, counting these points
gives the Littlewood–Richardson coefficients. This is described in more detail in Section 2.

Remark 3. Conf3(F̃�) and F̃� have very similar cluster structures. As a result, many of
the proofs in [16] apply here as well. For completeness and convenience, I have provided them
here. Since the current paper encompasses the main results in [16], I will seek publication of
this paper and not [16].

1.2. Full Fock–Goncharov conjecture

This subsection provides a bit of background on the full Fock–Goncharov conjecture following
[12].

The full Fock–Goncharov conjecture is a canonical basis conjecture for regular functions on
cluster varieties. Cluster varieties are schemes built out of birationally glued algebraic tori. A
torus (C∗)n comes with a canonical volume form dz1

z1
∧ · · · ∧ dz1

z1
. The birational gluing maps

are required to patch these volume forms on tori, giving a global volume form. In cluster theory,

†Thanks to G. Fourier and an anonymous referee for pointing this out to me.
‡A complete discussion of p∗ maps appears in [10, Section 2], and I give a brief review in Section 4.2.3.
§For readers already familiar with the cluster structure of Conf×3 (F̃�), these are the tori of the initial seed.
¶This condition allows us to associate a regular function on Conf×3 (F̃�)∨ to each irreducible component of

D := Conf3(F̃�) \ Conf×3 (F̃�), and it ensures D interacts well with the canonical basis for O(Conf×3 (F̃�)). This
will be discussed in greater detail in Section 4.1.



466 TIMOTHY MAGEE

there are two classes of such gluing maps (mutations), producing two types of cluster varieties
— known as A-varieties and X -varieties. The A and X mutations are defined dually from
the same data, and up to certain multipliers A and X are built from dual tori. There is a
notion of Langlands dual data that accounts for these multipliers, giving rise to another pair of
cluster varieties (LA, LX ) built precisely out of the dual tori for (A,X ). The pairs (A, LX ) and
similarly (LA,X ) are said to be Fock–Goncharov dual. For a discussion of A and X varieties
and their Fock–Goncharov duals, please see [6, Section 1.2; 10, Section 2; 12, Appendix A].

Let V be a cluster variety (of whichever type), and V∨ its Fock–Goncharov dual. We think of
V∨ as mirror to V as, if V and V∨ are sufficiently close to affine, the Fock–Goncharov canonical
basis conjecture becomes a special case of the log Calabi–Yau mirror symmetry conjecture
[11, Conjecture 0.6]. This is discussed in greater detail in the introduction of [12], where they
additionally give a log Calabi–Yau mirror symmetry interpretation of the Fock–Goncharov
canonical basis conjecture for arbitrary cluster varieties — not only those that satisfy certain
affineness assumptions†.

In [12], several algebras are associated to V. First, there is the upper cluster algebra
up(V) = O(V), originally defined for A-type cluster varieties in [1]. Its subalgebra generated by
global monomials, that is, global regular functions restricting to a character on some torus in
the atlas for V, is the ordinary cluster algebra ord(V). In the case of an A-type cluster variety,
this corresponds to the usual notion of a cluster algebra. If V∨ is the Fock–Goncharov dual
of V, can(V) is a vector space with basis parametrized by V∨(ZT )‡. Scattering diagrams and
broken lines are used to associate to each q ∈ V∨(ZT ) a (possibly infinite) sum of characters
on each torus in the atlas of V, the result denoted by ϑq, and to define a multiplication rule
for the ϑq. A scattering diagram for V is a collection of walls, each decorated with a scattering
function, living in a piecewise linear manifold V∨(RT ). Broken lines are lines drawn in this
piecewise linear manifold which are allowed to bend in a prescribed fashion at the walls. Each
linear piece is decorated with a monomial corresponding to the tangent direction, and the
allowed bending at a wall is determined by the wall’s scattering function. The ϑ-functions are
expressed in patches by summing decorating monomials over broken lines with a given initial
direction and end point. The details of this construction are beyond the scope of this paper.
In situations where the full Fock–Goncharov conjecture holds, can(V) will be identified with
up(V), and the ϑq will form a canonical basis for up(V). More generally, can(V) has a subspace
mid(V) parametrized by the subset Θ ⊂ V∨(ZT ) consisting of ϑq which restrict to finite sums of
characters, that is, Laurent polynomials, on tori from the atlas. Then each element of mid(V)
naturally corresponds to an element of up(V), but there is no reason a priori that distinct
elements of mid(V) must correspond to distinct elements of up(V). More formally, there is a
canonical algebra homomorphism ν : mid(V) → up(V), and we have the following definition.

Definition 4 [12, Definition 0.6]. We say that the full Fock–Goncharov conjecture holds
for V if ν : mid(V) → up(V) is injective, up(V) = can(V), and Θ = V∨(ZT ).

To recap, we have the following.

(1) up(V) = O(V).
(2) ord(V) ⊂ up(V), the subalgebra generated by global monomials.

†While the original Fock–Goncharov conjecture is false as stated, [10, 12] build toric degenerations of A-
varieties and show that the conjecture holds in a formal neighborhood of the central fiber of the degeneration.
They interpret this as saying the Fock–Goncharov conjecture always holds in the large complex structure limit.

‡This set — the integral tropical points of V∨ — is essentially the divisors D that we can use to partially
compactify V∨ such that the canonical volume form on V∨ has a pole along D. It will be discussed further in
the following Section 1.3. For a more complete description of tropicalization, see [12, Section 2].
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(3) can(V), the vector space spanned by ϑq for q ∈ V∨(ZT ), endowed with a multiplication
rule via scattering diagrams and broken lines.

(4) mid(V) ⊂ can(V), the span of Θ ⊂ V∨(ZT ), the ϑq which are Laurent polynomials on
cluster tori.

The full Fock–Goncharov conjecture pertains to (1), (3), and (4), rather than the usual
notion of a cluster algebra (2). The statement that the full Fock–Goncharov conjecture holds
for V is essentially that (1), (3), and (4) are all equal.

Many conditions implying the full Fock–Goncharov conjecture holds for a given cluster
variety are provided in [12]. I will use

[12, Proposition 8.25]. If A has large cluster complex, then Aprin has Enough Global
Monomials, Θ = A∨

prin(ZT ), and the full Fock–Goncharov conjecture holds for Aprin, X , very
general At, and, if the convexity condition (7) of [12, Theorem 0.3] holds, for A.

The cluster complex is a subset of the scattering diagram for A, where chambers correspond
to tori in the atlas for A and rays spanning these chambers correspond to cluster variables†.
Broken lines initiating within this region correspond to cluster monomials — ϑ-functions that
restrict to characters on some torus of the atlas of A. Each choice of torus in the atlas of A
gives an identification of A∨(RT ) with a real vector space. The statement that A has large
cluster complex means that, for some choice of torus, the cluster complex is not contained in
a half-space.

Before summarizing how I prove that Conf×3 (F̃�) has large cluster complex, I need to provide
a bit more background. Cluster varieties are built recursively from a Z-basis for the character
lattice of a torus and data that indicate how to replace this torus and basis with new tori and
bases. The bases are known as seeds, and the data used to replace one seed with another are
often encoded in a quiver — a directed graph. Mutation changes both the seed and the quiver.

To show that Conf×3 (F̃�) has large cluster complex, I exhibit a maximal green sequence
[3, Definition 2.8] for the quiver of the initial seed. I review the notion of a maximal green
sequence in Section 3.1. The existence of a maximal green sequence implies Conf×3 (F̃�) has
large cluster complex by [12, Proposition 8.24]‡.

Theorem 5. The quiver for the initial seed of Conf×3 (F̃�) has a maximal green sequence,

and therefore Conf×3 (F̃�) has large cluster complex.

Next, the convexity condition (7) of [12, Theorem 0.3] referenced in [12, Proposition 8.25]
is the following:

There is a seed s = (e1, . . . , en) for which all the covectors {ei, ·}, i ∈ Iuf , lie in a strictly
convex cone.

Here, s is a basis for the cocharacter lattice N of a torus in the A-variety. The data used
to define A include a skew form {·, ·} on N , an indexing set I of cardinality n, and a subset
Iuf ⊂ I corresponding to allowed directions of mutation. In writing covectors {ei, ·}, i ∈ Iuf ,
Gross–Hacking–Keel–Kontsevich refer to this skew form and subset of I.

I show that the convexity condition holds for the initial seed. Together with Theorem 5, this
shows Theorem 1 — the full Fock–Goncharov conjecture holds for Conf×3 (F̃�).

†See [12, Definition 2.9] for the precise definition of the cluster complex.
‡The weaker condition of a reddening sequence — see, for example, [13] — would also suffice here.
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1.3. Partial compactifications and potentials

The space we are really interested in is Conf3(F̃�), rather than Conf×3 (F̃�). It is Conf3(F̃�), not
Conf×3 (F̃�), that gives the decomposition

O
(
Conf3(F̃�)

)
=

⊕
α,β,γ

(Vα ⊗ Vβ ⊗ Vγ)G.

But Section 1.2 describes a canonical basis for O(Conf×3 (F̃�)).
This situation is typical. Generally spaces we are interested in, say for representation

theoretic reasons, will not be cluster varieties, or even log Calabi–Yau varieties†. However,
many representation theoretically interesting spaces are partial compactifications of cluster
varieties or log Calabi–Yau varieties in a nice way. For log Calabi–Yau varieties, the ‘nice’ type
of partial compactification we are interested in is called a partial minimal model. Take U to be
a log Calabi–Yau with canonical volume form Ω. Then an inclusion U ⊂ Y as an open subset
is a partial minimal model if Ω has a simple pole along every irreducible divisor of Y \ U . In
the special case that U is a cluster A-variety with frozen variables, there is a simple way these
partial minimal models may arise — by taking Y to be the partial compactification given by
allowing some frozen variables to vanish [12, Section 0.3]. Conf×3 (F̃�) and Conf3(F̃�) are related
in precisely this way.

In this situation, each irreducible divisor in D := Y \ U defines a divisorial discrete valuation
whose evaluation at Ω is negative. So, each irreducible component gives a point in U trop(Z)
by definition [10, Definition 1.7]. A divisorial discrete valuation (ddv) is a discrete valuation
v : C(U) \ {0} → Z on the field of rational functions of U given by order of vanishing along a
divisor on some variety birational to U . The set U trop(Z) is defined to be

{v : C(U) \ {0} → Z|v is a ddv, v(Ω) < 0} ∪ {0}.
This definition applies to all log Calabi–Yau varieties.

There is a related notion that specifically references the atlas of tori and mutation maps,
known as Fock–Goncharov tropicalization. Fock–Goncharov tropicalization applies to positive
schemes. Let U be a scheme where an open dense subset has an atlas of tori, glued birationally.
Suppose additionally that the transition functions between tori have the form f

g where f and g

are linear combinations of characters (Laurent monomials) with coefficients in Z�0. Such a U
is said to be a positive scheme [6, Definition 1.1]. If P is a semifield, we can take the P -points
of each torus– T (P ) := χ∗(T ) ⊗Z P , where χ∗(T ) is the cocharacter lattice of T and we use
the abelian group structure of P for the tensor product. The transition functions of a positive
scheme induce isomorphisms of the P -points of the tori, giving a notion of the P -points of U . In
particular, P can be taken to be a tropical semifield such as ZT — the set Z with multiplication
a⊗ b := a + b and addition a⊕ b := max(a, b). This gives the notion of the Fock–Goncharov
tropicalization U(ZT ).

Cluster varieties are both log Calabi–Yau varieties and positive schemes, so both notions of
tropicalization make sense here. They are closely related as well. There is a different tropical
semifield structure on Z, denoted Zt, given by replacing max with min. For a cluster variety
U , the notions U trop(Z) and U(Zt) coincide. We have an isomorphism of the tropical semifields
ZT and Zt given by sign change x 	→ −x. So, sign change also induces an identification

†Cluster varieties, both A- and X -varieties, form a very special class of log Calabi–Yau varieties, which
generalize Calabi–Yau varieties to the non-compact world. See [10, Definition 1.1]. I frame this discussion in
terms of log Calabi–Yau varieties rather than just cluster varieties in this introductory section simply because
it is the log Calabi–Yau structure, not the cluster structure, that is essential to the narrative. The cluster
structure will be very useful in many of the proofs later on, but this is a case where framing the narrative in a
more general context clarifies the key arguments rather than obscuring them.
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i : U(ZT ) → U trop(Z). These different notions of tropicalization and the relations between them
are carefully discussed in [12, Section 2]. With regard to the current paper, the reader is
encouraged to ignore the distinction between the two forms of tropicalization, only paying it
mind in the event that some sign confusion arises. The identification map i can be thought of
as a minor detail that simply allows us to relate differing conventions in the literature.

From now on, take U to be a cluster variety. Evaluation gives a pairing between U trop(Z)
and C(U). Since each element of Θ is canonically identified with a regular function on U , we
can restrict this pairing from C(U) to Θ. We can similarly restrict from U trop(Z) to Θ∨. In this
way, evaluation defines a pairing

〈·, ·〉 : Θ∨ × Θ → Z

(v, w) 	→ v(ϑw).

We could just as well start with the evaluation pairing between (U∨)trop(Z) and C(U∨), which
would restrict to the pairing

〈·, ·〉∨ : Θ∨ × Θ → Z

(v, w) 	→ w(ϑv).

These two pairings are conjectured to agree in general, and they are known to agree when
either v or w corresponds to a global monomial [12, Lemma 9.10, Remark 9.11].

Since the irreducible components Di of the divisor D in our partial minimal model Y ⊃ U
define points vi in U trop(Z), it is natural to ask whether these vi further lie in Θ∨, canonically
giving regular functions ϑvi

on U∨. If so, and if 〈vi, ·〉 = 〈vi, ·〉∨, then

ϑtrop
vi

(w) := w(ϑvi
) = vi(ϑw) = ordDi

(ϑw).

So in this scenario, ϑw extends to Di if and only if ϑtrop
vi

(w) � 0, and it extends to D if and
only if

min
i

{ordDi
(ϑw)} = w(W ) =: W trop(w) � 0,

where W :=
∑

i ϑvi
. This function W is called the Landau–Ginzburg potential associated to

the partial minimal model Y ⊃ U .
Assuming the full Fock–Goncharov conjecture holds for U , this gives a candidate basis for

O(Y ), namely {ϑw|W trop(w) � 0}. This need not be a basis though. Poles can cancel when we
add functions, so in principal we could have ϑp + ϑq regular on Y even if ϑp and ϑq have poles
along D.

So, once we know that (U∨)trop(Z) is canonically identified with a basis for O(U), there are
three issues we need to address in order to cut this down to a basis for O(Y ).

(1) Each irreducible component Di of D canonically determines a regular function θvi
on

U∨.
(2) For each component, 〈vi, ·〉 = 〈vi, ·〉∨.
(3) If a linear combination of ϑ-functions is regular on Y , then so is each ϑ-function appearing

in the sum.

If U is a cluster A-variety and Y is obtained by allowing frozen variables to vanish, all three
hold if each frozen index has an optimized seed. By construction, if a seed s is optimized for the
frozen index i, then ϑvi

restricts to a Laurent monomial on the cluster torus in X associated
to s. I provide a brief review of optimized seeds in Section 4.1. A more complete discussion can
be found in [12, Section 9.1].

In Section 4.1, I show that each frozen index for Conf×3 (F̃�) has an optimized seed.
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Theorem 6. Let Conf×3 (F̃�)∨ denote the Fock–Goncharov dual of Conf×3 (F̃�), and let W

be the Landau–Ginzburg potential on Conf×3 (F̃�)∨ associated to the partial minimal model

Conf×3 (F̃�) ⊂ Conf3(F̃�). Then

Ξ
(
ZT

)
:=

{
WT � 0

}⋂
Conf×3 (F̃�)∨(ZT

)
is canonically identified with a basis for O(Conf3(F̃�)), determined by the pair Conf×3 (F̃�) ⊂
Conf3(F̃�).

In general if we have some partial minimal model U ⊂ Y for a log Calabi–Yau, we cannot
expect to get a canonical basis for O(Y ) itself. The basis will be determined by the geometry
of the pair U ⊂ Y rather than the geometry of Y alone. However, in the particular case
Y = Conf3(F̃�), the log Calabi–Yau open subset U = Conf×3 (F̃�) is determined entirely by
the geometry of Y itself. It is simply the locus where underlying flags intersect generically,
described in more detail in Section 2. In this sense, Ξ(ZT ) can be viewed as a canonical basis
for O(Conf3(F̃�)) itself — it is a basis determined entirely by the geometry of Conf3(F̃�).

2. Discussion of Conf3(F̃�)

2.1. Representation theory background

Interest in Conf3(F̃�) has its roots in representation theory. The starting point is the Peter–
Weyl theorem. A group G acts on itself both by left and right multiplication, and this action
gives O(G) the structure of a G×G-bimodule. The following statement of the Peter–Weyl
theorem comes from [17].

Theorem 7 (Peter–Weyl). Let G be a linearly reductive group. Then as G×G-bimodules

O(G) =
⊕
λ

Vλ ⊗ V ∗
λ ,

where the sum is over isomorphism classes of irreducible representations of G.

For GLn, the span of the highest weight vector vλ in the irreducible representation Vλ of
highest weight λ is the one-dimensional subspace fixed by U — the subgroup of upper triangular
matrices with 1’s along the diagonal. So

O(G)1×U =
⊕
λ

Vλ ⊗ C · uλ, (1)

where uλ is the highest weight vector for V ∗
λ . The weight of uλ is −w0(λ), where w0 is the

longest element of the Weyl group W of G†. So the copy of Vλ appearing in equation (1) is
a weight space for the right action of the maximal torus H in G, and its weight is −w0(λ).
To stress this point, the left action of H splits Vλ into weight spaces, the highest weight being
λ, but under the right action Vλ is the −w0(λ)-weight space. The next thing to observe is
that functions on G that are fixed by U — so f(xu) = f(x) for all u ∈ U — are the same as
functions on G/U ∼= F̃�. Then

O
(
F̃�

)
=

⊕
λ

Vλ,

and this is a weight space decomposition for the right action of H.

†The Weyl group for GLn is just Sn, and w0 is the permutation sending 1, 2, . . . , n to n, n− 1, . . . , 1.
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Now if we were to take three copies of F̃� instead of one, we would have

O
(
F̃�×3)

=
⊕
α,β,γ

Vα ⊗ Vβ ⊗ Vγ .

The G-fixed subspace of Vα ⊗ Vβ ⊗ Vγ (with G acting on the left diagonally) is identified with
homG(V ∗

γ , Vα ⊗ Vβ). By Schur’s lemma, this is just a copy of the trivial representation for every
copy of V ∗

γ appearing in Vα ⊗ Vβ . Then

O
(
Conf3(F̃�)

)
=

⊕
α,β,γ

(Vα ⊗ Vβ ⊗ Vγ)G,

with (Vα ⊗ Vβ ⊗ Vγ)G the (−w0(α),−w0(β),−w0(γ))-weight space of the right H×3 action,
and

dim (Vα ⊗ Vβ ⊗ Vγ)G = c
−w0(γ)
αβ .

The term on the right is a Littlewood–Richardson coefficient. These are the structure constants
giving the decomposition

Vα ⊗ Vβ =
⊕
γ

V
cγαβ
γ .

This is the connection between Conf3(F̃�) and the Littlewood–Richardson coefficients.

2.2. Geometric background

As mentioned in Section 1.1, Conf3(F�) is Fano and π : Conf3(F̃�) → Conf3(F�) is naturally an
H×3-bundle. Points in Conf3(F�) are triples of complete flags, defined up to an overall G-action.
Given two arbitrary flags X• = (X1 ⊂ · · · ⊂ Xn) and Y• = (Y1 ⊂ · · · ⊂ Yn) , we expect the i-
dimensional subspace Xi and the (n− i)-dimensional subspace Yn−i to intersect transversely. A
triple of flags (X•, Y•, Z•) ∈ Conf3(F�) is in generic configuration if each pairwise transversality
condition is satisfied†. Conf×3 (F�) ⊂ Conf3(F�) is the subset consisting of such triples of flags. It
is log Calabi–Yau — its complement is an anti-canonical divisor D in Conf3(F�). Furthermore,
the canonical volume form on Conf×3 (F�) has a pole along all of D. We could in principle use
the log Calabi–Yau mirror symmetry machinery to study the pair Conf×3 (F�) ⊂ Conf3(F�).
After all, the vector spaces of interest (Vα ⊗ Vβ ⊗ Vγ)G from Section 2.1 are spaces of sections
of line bundles over Conf3(F�). However, lifting to Conf3(F̃�) will allow us to tackle all of the
line bundles, and so all of the vector spaces (Vα ⊗ Vβ ⊗ Vγ)G, at once. Conf×3 (F̃�) is precisely
π−1(Conf×3 (F�)) and Conf3(F̃�) is again a (partial) minimal model for Conf×3 (F̃�).

2.3. Cluster structure

Conf×3 (F̃�) is not just log Calabi–Yau. Fock and Goncharov described a cluster structure for it
in [5]. The discussion here is based on [5, 8].

Define C̃onf3(F̃�) := SLn \(GLn /U)×3, and define C̃onf3
×

(F̃�), C̃onf3(F�), and C̃onf3
×

(F�)
analogously. It will also be handy later to define W̃ and Ξ̃ to be the Landau–Ginzburg potential

on C̃onf3
×

(F̃�)∨ and the cone given by its tropicalization. I will describe the initial seed

of C̃onf3
×

(F̃�), viewed as a cluster A-variety, and we will view Conf×3 (F̃�) as a quotient of

C̃onf3
×

(F̃�).

†This is a restatement of the definitions given in [5, 8], specific to Conf3(F�).
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The quiver for the initial seed comes from the ‘n-triangulation’ of a triangle, illustrated below
for n = 4.

Figure 1 (colour online). 4-triangulation of the triangle.

The vertices in the n-triangulation will be the vertices of our quiver. For the arrows, we need
to orient the edges of the n-triangulation. First, the boundary of the original triangle is given
a clockwise orientation. The edges of the n-triangulation inherit their orientation from this one
in the manner illustrated below.

Figure 2 (colour online). Oriented 4-triangulation.

The vertices on the boundary of the original triangle are frozen vertices of the quiver, and
the vertices in the interior are unfrozen. We ignore arrows between frozen vertices as they do
not affect mutation, so the quiver we are after is:

.

Figure 3 (colour online). Quiver for the initial seed of C̃onf3
×

(F̃�) for G = GL4. Frozen vertices
are blue and unfrozen vertices are orange.
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The vertices of the quiver can be indexed by triples of non-negative integers (a, b, c) satisfying
a + b + c = n.

c
=

4
c
=

3
c
=

2
c
=

1
c
=

0

a = 4

a = 3

a = 2

a = 1

a = 0

b
=

4

b
=

3

b
=

2

b
=

1

b
=

0

Figure 4 (colour online). Indexing vertices of C̃onf3
×

(F̃�) quiver for G = GL4.

Take V to be an n-dimensional vector space. A point X in F� ∼= GL(V )/U(V ) is a complete
flag X• = (X1 ⊂ · · · ⊂ Xn) of subspaces of V together with non-zero vector xi in each successive
quotient Xi/Xi−1. I will denote this by x• = (x1, . . . , xn). Now choose a volume form ω on V .

The cluster variables in the initial seed of C̃onf3
×

(F̃�) are defined as follows:

A(a,b,c) : (X,Y, Z) 	→ ω(x1 ∧ · · · ∧ xa ∧ y1 ∧ · · · ∧ yb ∧ z1 ∧ · · · ∧ zc).

Note that by definition a linear transformation T : V → V is in SL(V ) if and only if ∧nT

acts by the identity on ∧nV . So A(a,b,c) is indeed a well-defined function on C̃onf3
×

(F̃�) — it
respects the quotient by the diagonal SL(V ) action. None of these cluster variables are invariant
under the diagonal action of GL(V ) — they are not functions on Conf×3 (F̃�) – but rational
functions in these variables can still be GL(V ) invariant. In fact, take a Laurent monomial in
these variables:

f =
∏

a+b+c=n

A
r(a,b,c)

(a,b,c) .

Then for g ∈ GL(V ),

g · f(X,Y, Z) = (det g)
∑

r(a,b,c)f(X,Y, Z).

So f is GL(V ) invariant if and only if ∑
a+b+c=n

r(a,b,c) = 0.

This will lead to a condition on g-vectors (Proposition 21), which will index our ϑ-functions.
I review the notion of g-vectors in Section 4.2.3.

Remark 8. The initial data I have described is for C̃onf3
×

(F̃�) rather than Conf×3 (F̃�). That
said, it can easily be translated into initial data for Conf×3 (F̃�). That is, we can view Conf×3 (F̃�)
as a cluster variety in its own right, rather than as a quotient of a cluster variety. One way to do
this is to replace all cluster variables A(a,b,c) of the initial seed with a new collection of variables,
say A(a,b,c) = A(a,b,c)/A(n,0,0). Upon doing so, the proofs I give in the following sections using
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the cluster structure of C̃onf3
×

(F̃�) translate immediately to Conf×3 (F̃�). However, I find it
more natural to avoid such choices. In what follows, I will freely use the cluster structure of

C̃onf3
×

(F̃�) without further comment.

3. Full Fock–Goncharov conjecture holds for Conf×3 (F̃�)
I will show that the full Fock–Goncharov conjecture holds for Conf×3 (F̃�) by proving the
following two conditions.

(1) The quiver Qs0 for the initial seed of Conf×3 (F̃�) has a maximal green sequence.
(2) In the initial seed s0 = (e1, . . . , en), all of the covectors {ei, ·}, i ∈ Iuf , lie in a strictly

convex cone†.

Together, (1) and (2) imply that the full Fock–Goncharov conjecture holds for Conf×3 (F̃�)
[12, Proposition 8.25]. We will begin with (2) as its proof is much shorter.

Proposition 9. In the initial seed s0 = (e1, . . . , en), all of the covectors {ei, ·}, i ∈ Iuf , lie
in a strictly convex cone.

Proof. This is implied by the existence of a unimodular p∗ map. In Section 4.2.3, I construct
a particular p∗ map and prove its unimodularity in Proposition 24. �

3.1. Maximal green sequence

Let us first review what maximal green sequences are. Recall that the Aprin construction
involves a ‘doubled’ quiver, where a new frozen vertex wi is introduced for each vertex vi of the
original quiver for A, and for each unfrozen vertex vi we introduce an arrow vi → wi. See [10,
Construction 2.11] for a more complete discussion‡. This quiver is called the framed quiver Q̂

associated to Q in [3]. As an example, if we take principal coefficients at s0 for Conf×3 (F̃�), we
would replace the quiver Qs0 of Figure 3 with

Q̂s0 =

.

Figure 5 (colour online). Quiver for Conf×3 (F̃�) with principal coefficients at s0 for n = 4. The
new vertices and arrows that have been introduced are in full color while old portions are faded.
Only the faded orange vertices are unfrozen.

†Iuf is the unfrozen subset of the indexing set I — the subset corresponding to mutable vertices.
‡The description I am giving here is for the skew-symmetric case, so at first glance it could look different

from the more general construction in [10]
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Now let Q′ be an arbitrary quiver mutation-equivalent to Q̂. An unfrozen vertex vi of Q′

is said to be green if all arrows between vi and any wj are outgoing: vi → wj
†. On the other

hand, vi is red if all arrows between vi and any wj are incoming: vi ← wj . A major result in
cluster theory — known as sign coherence of c-vectors [12, Corollary 5.5] — implies that all
unfrozen vertices are either green or red‡. A sequence of mutations is called a green sequence
if each mutation in the sequence is mutation at a green vertex. It is a maximal green sequence
if every unfrozen vertex in the resulting quiver is red.

Let �r be the top r rows of unfrozen vertices in Qs0 , and let i�r
be mutation at each of these

vertices in order — left to right, top to bottom. For example, for n = 6, i�3 is the following
sequence:

1

2 3

4 5 6

.

Figure 6 (colour online). The mutation sequence i�3 for n = 6. We mutate at the indicated
vertices in the indicated order.

Note that r can be at most n− 2 (the number of rows of unfrozen vertices).

Proposition 10. The sequence i�n−2 , followed by i�n−3 , i�n−4 , . . . , i�1 is a maximal
green sequence.

Remark 11. This maximal green sequence induces a simple involution on O(Conf3(F̃�))
that I think is worth mentioning. It sends (Vα ⊗ Vβ ⊗ Vγ)G to (V ∗

α ⊗ V ∗
γ ⊗ V ∗

β )G. See
Corollary 32 for details.

Remark 12. This sequence is one of the pieces I have lifted from the earlier paper [16]. It
has been brought to my attention that the sequence has since appeared in [9, Proposition 9.8;
15, Section 3.3]. Le discusses the sequence in the context of a cactus transformation, making
observations similar to Corollary 32. Goncharov and Shen discuss the sequence in the context of
Donaldson–Thomas transformations, and use it to show that an involution on Conf3(SLn /U)
is a cluster transformation.

Let us start by looking at i�r
. Define �′

r := {wi|vi ∈ �r} and let F be the frozen vertices
of Qs0 . We will split up the effects of i�r

into three parts:

(1) how it affects the full subquiver with vertices �n−2,

†Note that by construction all unfrozen vertices of Q̂ are green.
‡In the skew-symmetric case, the c-vector ci;s at the seed s associated to Q′ is ci;s :=∑
vi→wj

ej −∑
vi←wj

ej . The statement that ci;s is sign coherent means either the left or right sum is empty.
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(2) how it affects the collection of arrows between F and �n−2, and
(3) how it affects the collection of arrows between �′

n−2 and �n−2.

Note that we can split up the analysis this way. Since we never mutate at frozen vertices,
arrows between the vertices of �n−2 are unaffected by the presence of the frozen vertices. There
is never a composition with the center vertex frozen. Additionally, since we never introduce
arrows between frozen vertices, we could in principle treat each frozen vertex separately if we
wanted to.

Lemma 13. The mutation sequence i�r
sends the subquiver

· · ·

...
...

...

· · ·

Q�n−2
=

Row n− 2

to

...
...

...

· · ·

· · ·

· · ·

Row r

...
...

...
...

· · ·

· · · Row n− 2

Qi�r
=

.

So Q�r−1 — the full subquiver with vertex set �r−1 — remains unchanged, Q�r
only has its

bottom horizontal arrows deleted, Q�r+1 additionally has its bottom horizontal arrows deleted
and its bottom diagonal arrows reversed, and this accounts for all changes to Q�n−2 .
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Proof. It is immediate that the claim holds for r = 1 – there is only one mutation to
perform. Suppose it holds for all q < r. Then the quiver after performing i�r−1 is Qi�r−1

. All
that remains is mutation through row r. We start with the leftmost vertex:

...
...

...

· · ·

· · ·

· · · Row r

...
...

...
... .

This is followed by

...
...

...

· · ·

· · ·

· · · Row r

...
...

...
... ,

...
...

...

· · ·

· · ·

· · · Row r

...
...

...
... ,

and so forth. Mutation at the kth vertex vk of row r, 1 < k < r, sends

vk

to

vk

.
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After mutation at vr−1, we have the quiver

...
...

...

· · ·

· · ·

· · · Row r

...
...

...
... .

Finally, mutation at vr yields Qi�r
. �

Now let us move on to how i�r
affects the collection of arrows between F and �n−2.

This is not really necessary to prove Proposition 10 — these arrows are not considered when
determining if an unfrozen vertex is red or green — but it is worth knowing in any case, and
it will provide a nice sanity check later. See Remark 16.

Lemma 14. For each Qs′ mutation equivalent to Qs0 , let As′ be the subquiver having
all vertices of Qs′ but only those arrows for which either the head or tail is in F . Then
Ai�r (s0) ⊂ Qi�r (s0) can be constructed from As0 as follows.

(1) Rearrange frozen vertices, keeping arrows fixed to their original positions. (Vertices are
being relabeled.) Send v(n−1,1,0) to the v(n−r−1,0,r+1) position, v(n−1,0,1) to the v(n−r−1,r+1,0)

position, v(a,b,0) to the v(a+1,b−1,0) position for 1 < b < r + 1, and v(a,0,c) to the v(a+1,0,c−1)

position for 1 < c < r + 1.
(2) Reverse arrows involving the vertices now in the v(n−r−1,r+1,0) and v(n−r−1,0,r+1)

positions.

I will illustrate the claim with an example before proving it. For n = 6, As0 is

,
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and Ai�3 (s0) is

.

Proof. Mutating Qs0 at the top unfrozen vertex v(n−2,1,1) produces

...
...

... ,

which we can rearrange as

...
...

... .
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So the claim holds for Ai�1 (s0). Suppose it holds for all q < r. Then, using Lemma 13,
Qi�r−1 (s0) is

...
...

...

· · ·

· · ·

· · ·

...
...

...
...

v(n,0,0)

v(n−2,0,2)

v(n−3,0,3)

v(n−4,0,4)

v(n−5,0,5)

v(n−2,2,0)

v(n−3,3,0)

v(n−4,4,0)

v(n−5,5,0)

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r .

It remains to mutate through row r. Mutating at the leftmost unfrozen vertex of row r gives
...

...
...

· · ·

· · ·

· · ·

...
...

...
...

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r ,

which we rearrange as
...

...
...

· · ·

· · ·

· · ·

...
...

...
...

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r .
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The next vertex of mutation sharing an arrow with some frozen vertex is the rightmost vertex
of row r — the final vertex in our sequence. The penultimate quiver in the sequence is

...
...

...

· · ·

· · ·

· · ·

...
...

...
...

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r .

The final mutation gives

...
...

...

· · ·

· · ·

· · ·

...
...

...
...

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r ,

which rearranges to

...
...

...

· · ·

· · ·

· · ·

...
...

...
...

v(n−r,0,r)

v(n−1,1,0)

v(n−r−1,0,r+1)

v(n−r−2,0,r+2)

v(n−r,r,0)

v(n−1,0,1)

v(n−r−1,r+1,0)

v(n−r−2,r+2,0)

Row r ,

completing the proof. �



482 TIMOTHY MAGEE

Now onto the arrows between �′
n−2 and �n−2.

Lemma 15. For each Qs′ mutation equivalent to Q̂s0 , let Rs′ be the subquiver with vertex
set �n−2

⋃�′
n−2 but only those arrows for which either the head or tail is in �′

n−2. Then
Ri�r (s0) can be constructed from Rs0 as follows.

(1) Rearrange �n−2, keeping arrows fixed to their original positions. (Vertices are being
relabeled.) Send w(n−b−1,b,1) to the w(n−r−1,b,r−b+1) position for b � r and w(a,b,n−a−b) to the
w(a+1,b,n−a−b−1) position for b � r.

(2) Reverse the arrow between v(n−r−1,b,r−b+1) and the vertex now in the w(n−r−1,b,r−b+1)

position for b � r.
(3) Introduce a new arrow from the vertex now in the w(a+1,b,n−a−b−1) position to

v(n−r−1,b,r−b+1) for b � r.
(4) If r < n− 2, introduce a new arrow from v(n−r−2,b,r−b+2) to the vertex now in the

w(a,b,n−a−b) position for b � r.

To illustrate the claim, if we take n = 7, then Rs0 is

Figure 7 (colour online). Rs0 for n = 7. Here the faded orange vertices belong to �5,
and the rest to �′

5.

and Ri�3 (s0) is

.

Figure 8 (colour online). Ri�3 (s0) for n = 7. For visual clarity, arrows from �5 to �′
5 are

colored cyan and arrows from �′
5 to �5 are colored magenta.
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Proof. The first mutation gives

,

which agrees with the statement for r = 1. Assume it holds for all q < r. Then after mutating
through i�r−1 and rearranging the vertices as described, we have

...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
Row r

...
...

...
...

...
...

...
...

and we just have to mutate through row r. The unfrozen portion of the quiver for each
of the remaining mutations is given in the proof of Lemma 13. Note that there is a cyan
arrow emanating from v(n−r−1,b,r−b+1) corresponding to each magenta arrow terminating at
v(n−r−2,b,r−b+2), and there is one additional cyan arrow v(n−r−1,b,r−b+1)→w(n−r−1,b,r−b+1).
Now, v(n−r−1,b,r−b+1) is the bth vertex of mutation in this row, and each of the magenta
arrows are killed by a composition

v(n−r−2,b,r−b+2) → v(n−r−1,b,r−b+1)→•

while a cyan arrow v(n−r−2,b,r−b+2)→w(n−r−1,b,r−b+1) is created. Meanwhile, if r < n− 2, a
new cyan arrow is created by the compositions

v(n−r,b,r−b) → v(n−r−1,b,r−b+1)→• ⇒ v(n−r,b,r−b)→•,

and each of the cyan arrows

v(n−r−1,b,r−b+1)→•

is reversed, becoming the magenta arrow

v(n−r−1,b,r−b+1)←•.
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So after performing i�r
we obtain the quiver

...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
Row r

...
...

...
...

...
...

...
...

which we rearrange to

...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
Row r

...
...

...
...

...
...

...
...

finishing the proof. �

We now have all of the ingredients we need to tackle Proposition 10.

Proof. We start with i�n−2 . From the proof of Lemma 15, we see that each time we mutate
at a vertex vk in i�n−2 , all arrows between vk and �′

n−2 emanate from vk — so vk is green.
Then i�n−2 is a green sequence. Using Lemmas 13–15, performing i�n−2 on Q̂s0 and rearranging
vertices as indicated in the lemmas results in the quiver
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...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

.

The vertices of the bottom unfrozen row are now red, while the remaining unfrozen vertices
are all green. For consistency with the �r notation, let us only consider unfrozen vertices when
indexing the rows. So the bottom unfrozen row we will call row n− 2, the one above it row
n− 3, and so forth. This quiver is very similar to the one we started with. Above row n− 2
the only relevant difference is the introduction of the magenta arrows from �′

n−3 to row n− 2.
Referring to the proof of Lemma 13, we note that no vertex of mutation in the sequence i�n−4

shares an arrow with row n− 2. As a result, no composition affecting these arrows can occur
until we mutate at row n− 3. That is, the subsequence i�n−4 of i�n−3 proceeds exactly as
before, with these magenta arrows tagging along for the ride. Then prior to mutation through
row n− 3, there is a cyan arrow emanating from v(2,b,n−b−2) for all but one of the magenta
arrows terminating at v(1,b,n−b−1). These paired magenta arrows are canceled upon mutation
at v(2,b,n−b−2). So after performing i�n−3 and rearranging frozen vertices, we have

...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

.
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Now the unfrozen vertices of rows n− 2 and n− 3 are red and the remaining unfrozen vertices
are green. We can employ the reasoning just used for i�n−3 to the remaining subsequences
i�n−4 , i�n−5 , . . . , i�1 . The resulting quiver is

...
...

...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

and the sequence i�n−2 , followed by i�n−3 , i�n−4 , . . . , i�1 is a maximal green sequence. �

Remark 16. With the indicated rearranging of frozen vertices, the final quiver we obtained
is the same as the original framed quiver with every arrow reversed. Imagine each w(a,b,c) as
lying above v(a,b,c). Now ignore temporarily all vertices that are not attached to any arrows,
and reflect the rest of the final quiver over the plane given by a = c. The quiver itself is
obviously the same. We have just changed its embedding into R3 and returned each w(a,b,c)

to its original position. Note that this also gives an isomorphism of the full subquiver whose
vertex set is all of the v(a,b,c) vertices with the quiver Qs0 . So there is an isomorphism of the
final quiver with the coframed quiver† }Qs0 fixing the w(a,b,c) vertices. This is what we expect
by [3, Proposition 2.10], and it is a sanity check for the work in this section.

4. From Conf×3 (F̃�) to Conf3(F̃�)

4.1. Existence of optimized seeds

The main result of this subsection is that every frozen index for Conf×3 (F̃�) has an optimized
seed. In the skew-symmetric case, a seed s is optimized for the frozen index i if the vertex vi
is a sink of the associated quiver Qs. The frozen index i corresponds to a component Di of the
divisor we have added to Conf×3 (F̃�), and the existence of a seed optimized for i ensures that
the ϑ-function on Conf×3 (F̃�)∨ associated to Di is a global monomial. See [12, Section 9.1] for
a more complete discussion of optimized seeds.

So far we have a basis B× for O(Conf×3 (F̃�)). What we really want is a basis B for
O(Conf3(F̃�)). A natural candidate for B is the subset of B× that extends to the divisors

†This differs from the framed quiver in that arrows wi → vi are introduced rather than vi → wi.
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we have added, that is, B× ⋂O(Conf3(F̃�)). But this candidate is not automatically a basis
for O(Conf3(F̃�)). Maybe ϑp, ϑq ∈ B× both have a pole along some component Di, but
these poles cancel in their sum ϑp + ϑq. Then we would have ϑp + ϑq ∈ O(Conf3(F̃�)), but
ϑp, ϑq /∈ O(Conf3(F̃�)) ⊂ O(Conf×3 (F̃�)). The existence of an optimized seed for each frozen
index ensures that this does not happen — if a linear combination of ϑ-functions extends
to Di, then each ϑ-function in the sum extends as well [12, Proposition 9.7]. This condition
is needed to utilize [12, Theorem 0.19], which will be used in the coming subsection on the
potential W and cone Ξ for Conf3(F̃�).

Proposition 17. Every frozen index for Conf×3 (F̃�) has an optimized seed.

Proof. For cluster varieties with skew-symmetric exchange matrix, a seed s is optimized
for the frozen index f if and only if the vertex vf is a sink in the quiver Qs [12, Lemma 9.2].
Consider a quiver QL of the form

vf v1 v2 vr−1 vr· · · .

The sequence of mutations v1, v2, . . . , vr yields the quiver

vf v1 v2 v3 vr−1 vr· · ·QLf
=

,

making vf a sink. The initial seed quiver for Conf×3 (F̃�) is shown in Figure 3. Call it Qs0 . Since
there are no arrows to or from the corner vertices v(n,0,0), v(0,n,0), and v(0,0,n), every quiver
mutation equivalent to Qs0 will trivially be optimized for these three vertices. Beyond that, Qs0

is optimized for v(n−1,1,0), v(0,n−1,1), and v(1,0,n−1). For the remaining frozen vertices vf , there
is a subquiver of Qs0 isomorphic to QL. Performing these mutations on Qs0 only affects the
subquiver whose vertices are either in QL or connected to QL by an arrow. As arrows between
frozen vertices are deleted, any frozen vertices besides vf can be ignored when determining if
vf becomes a sink. Then the relevant subquiver of Qs0 has the form

· · ·

· · ·

· · · ,

Figure 9 (colour online). Subquiver of Qs0 . The frozen vertex vf in question is blue. All other
vertices in this subquiver are unfrozen and have been colored orange. The faded portion is
displayed for reference only — it is not part of the subquiver in question.

possibly with the top or bottom row deleted and with the middle row being the subquiver QL.
(Of course, depending on the position of vf , it may be necessary to rotate Figure 9.) The key
observation is that, for every quiver in the sequence, each vertex connected to vf by an arrow is
a vertex of the subquiver QL. The cycles prevent any new arrows involving vf from developing
via some composition with an arrow not in QL. The explicit mutations, ending with vf as a
sink, are shown below.
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
�

4.2. The potential W and cone Ξ for Conf3(F̃�)
In this subsection I compute the Landau–Ginzburg potential W and corresponding cone
Ξ := {WT � 0} ⊂ Conf×3 (F̃�)∨(RT ). By [12, Theorem 0.19], the analogous cone for Aprin

gives a canonical basis for the finitely generated algebra mid(Aprin) = up(Aprin). However,
the exchange matrix for Conf×3 (F̃�) is full rank over Z. This is immediate from the stronger
result Proposition 24. Then, as explained in [12, Proofs of Corollaries 0.20 and 0.21, p. 581],
the desired results for Conf3(F̃�) are implied by the results for Aprin. I will say a few more
words about this in Subsection 4.3.

I give an explicit description of W and Ξ in the initial seed. In this seed, the inequal-
ities defining Ξ are precisely the tail positivity conditions of [18]. I also exhibit a map
p∗ : N → M that identifies W with the representation theoretically defined potential WGS

of [8] on Conf×3 (F̃�) and identifies Ξ with the Knutson–Tao hive cone [14].† Before doing this,
let us recall what WGS and the Knutson–Tao hive cone are.

4.2.1. Knutson–Tao hive cone. Consider a triangular array of vertices indexed by triples
(a, b, c) ∈ (Z�0)3 with a + b + c = n, for some fixed n, just like in Figure 4. Let H be the set of

†Here N is the cocharacter lattice for a torus in Conf×3 (F̃�) and M is its dual — the cocharacter lattice for a

torus in Conf×3 (F̃�)∨. The map p∗ commutes with mutation and is closely related to the exchange matrix. See
[10, Section 2] for a general discussion of p∗ maps, and Section 4.2.3 below for a brief review.
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these vertices. RH is the possible labelings of these vertices by real numbers. Now take any pair
of neighboring triangles, together forming a rhombus. This rhombus defines a linear inequality
in RH by requiring the sum of the labels on the obtuse vertices to be greater than or equal to
the sum of the labels on the acute vertices.

x

z w

y

Figure 10 (colour online). This rhombus gives the inequality y + z − x− w � 0.

Now denote by 1H the labeling where each entry is 1. The ‘Knutson–Tao hive cone’ generally
refers to one of the following three cones.

(1) The polyhedral cone in RH satisfying all rhombus inequalities.
(2) The slice of (1) having top entry 0.
(3) The quotient of (1) by R · 1H‡.

(2) and (3) clearly have completely equivalent combinatorics, with each point in (2) giving
a representative of one of the equivalence classes in (3). The points in the Knutson–Tao hive
cone are called hives.

The Knutson–Tao hive cone encodes the Littlewood–Richardson coefficients in a really
beautiful way. Suppose we want to know dim (Vα ⊗ Vβ ⊗ Vγ)G. The choice of weights (α, β, γ)
determines the border of a hive, which I will illustrate in terms of (3). If λ = (λ1, . . . , λn),
define |λ| = λ1 + · · · + λn. Now take |α| + |β| + |γ| = 0 — otherwise dim (Vα ⊗ Vβ ⊗ Vγ)G = 0.
Then we label the border of the hive as follows:

Note that the condition |α| + |β| + |γ| = 0 is exactly what we need to be able to fill in
the border this way. Also note that, since we are working only up to translations in the 1H
direction, the border is completely determined by the choice of (α, β, γ). Furthermore, this
picture is manifestly symmetric under cyclically permuting α, β, and γ. Knutson and Tao
showed that the number of integral hives with this border is precisely dim (Vα ⊗ Vβ ⊗ Vγ)G

[4, 14].

4.2.2. Goncharov–Shen potential WGS . In [8], Goncharov and Shen gave a new construc-
tion of the Knutson–Tao hive cone, which I describe briefly here. Goncharov and Shen describe
points in F̃� as pairs (U, χ), where U is a maximal unipotent subgroup in G and χ is a
non-degenerate additive character on U — meaning a group homomorphism U → Ca such
that the stabilizer of (U, χ) under the conjugation action of G is precisely U . For each triple
((U1, χ1), (U2, χ2), (U3, χ3)) ∈ Conf×3 (F̃�), there is a unique element ujk ∈ Ui conjugating Uj

to Uk. This gives a natural function on Conf×3 (F̃�):
WGS((U1, χ1), (U2, χ2), (U3, χ3)) := χ1(u23) + χ2(u31) + χ3(u12).

They then show that in the initial seed of the cluster variety, WT
GS � 0 gives exactly the

rhombus inequalities cutting out the Knutson–Tao hive cone.

‡Note that 1H spans a linear subspace of (1).
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x(4,0,0)

x(0,4,0)x(0,0,4) x(0,2,2)x(0,1,3) x(0,3,1)

x(2,0,2)

x(1,0,3)

x(3,0,1)

x(2,2,0)

x(3,1,0)

x(1,3,0)

α1 = x(3,1,0) − x(4,0,0)

α2 = x(2,2,0) − x(3,1,0)

α3 = x(1,3,0) − x(2,2,0)

α4 = x(0,4,0) − x(1,3,0)

β
1 =

x
(0,3,1) −

x
(0,4,0)

β
2 =

x
(0,2,2) −

x
(0,3,1)

β
3 =

x
(0,1,3) −

x
(0,2,2)

β
4 =

x
(0,0,4) −

x
(0,1,3)

γ1 = x(1,0,3) − x(0,0,4)

γ2 = x(2,0,2) − x(1,0,3)

γ3 = x(3,0,1) − x(2,0,2)

γ4 = x(4,0,0) − x(3,0,1)

Figure 11 (colour online). Labeling the border of a hive for n = 4, with obvious generalization
to arbitrary n.

4.2.3. W , Ξ, and p∗. The Landau–Ginzburg potential W is the sum of ϑ-functions
associated to the irreducible components of D := Conf3(F̃�) \ Conf×3 (F̃�). D is given by

n−1∑
i=1

(
D(i,n−i,0) + D(0,i,n−i) + D(n−i,0,i)

)
,

where, for example†,

D(i,n−i,0) :=
{

(X,Y, Z) ∈ Conf3(F̃�)|Xi �� Yn−i

}
=

{
A(i,n−i,0) = 0

}
.

Suppose the seed s is optimized for the frozen index (i, n− i, 0). Then on the torus TM ;s in
the atlas for Conf×3 (F̃�)∨, ϑ(i,n−i,0) is given by z−e(i,n−i,0) [12, Lemma 9.3]‡. We can express
ϑ(i,n−i,0) on other tori in the atlas by pulling back z−e(i,n−i,0) via the birational gluing maps.
The formula for mutation at vk is

μ∗
k(z

n) = zn(1 + zek)−{n,ek},

where n ∈ N — the lattice of the fixed data used to define the cluster structure. If s =
(e1, . . . , en), then μk(s) = (e′1, . . . , e

′
n) where

e′i =

{
ei + [εik]+ek if i �= k

−ek if i = k
.

†The symbol �� denotes a non-transverse intersection.
‡The negative sign comes from the sign change identification i of Conf×3 (F̃�)∨(ZT ) and (Conf×3 (F̃�)∨)trop(Z).
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Here ε is the exchange matrix for the seed s, given by εij = {ei, ej}§. The notation [a]+ is
shorthand for max{0, a}. I will express each of the ϑ-functions, and hence W , in the initial
seed s0 using this mutation formula.

Remark 18. Using this exponential notation, the X -variables of a given seed
s = (e1, · · · , en) are defined by Xi := zei and the A-variables by Ai := ze

∗
i . See [10, Section 2],

keeping in mind that we are considering the skew-symmetric case here.

For each frozen index f , we have an explicit sequence of mutations from s0 to a seed sf
optimized for f from the proof of Proposition 17. We want to pullback ϑf from TM ;sf to
TM ;s0 , so we reverse this sequence. All of the mutations occur at vertices of the subquiver QL,
so, by the mutation formula given above, only indices of QL will come into play in computing
the pullback of ϑf .

Proposition 19. Recall the quivers QL and QLf
of Proposition 17. Call the seeds associated

to these quivers s0 and s. Then the pullback of z−efs from TM ;s to TM ;s0 is

z−ef + z−ef−e1 + z−ef−e1−e2 + · · · + z−ef−e1−e2−···−er .

Proof. The quiver for the first mutation is

vf v1 v2 v2 vr−2 vr−1 vr· · ·
.

So

μ∗
r

(
z−e′f

)
= z−e′f (1 + zer )−{−e′f ,er}

= z−ef−[εfr]+er (1 + zer){ef+[εfr]+er,er}

= z−ef−er (1 + zer ).

The next quiver is

vf v1 v2 v2 vr−2 vr−1 vr· · ·
.

μ∗
r−1

(
z−e′f−e′r

(
1 + ze

′
r

))
= z−e′f−e′r (1 + zer−1)−{−e′f−e′r,er−1}(1 + ze

′
r (1 + zer−1)−{e′r,er−1})

= z−ef−er−1−er (1 + zer−1)0
(
1 + zer (1 + zer−1)1

)
= z−ef−er−1−er (1 + zer (1 + zer−1)).

This pattern continues with the ith mutation yielding

z−ef−er−i+1−er−i+2−···−er (1 + zer(1 + zer−1 · · · (1 + zer−i+1) · · · )).

§Generally there would be multipliers dj modifying this expression, but in the case under consideration all
multipliers dj are 1. This is known as the skew-symmetric case. Additionally, the reader who wishes to compare
results here with work following Fomin and Zelevinsky’s conventions should set the Fomin–Zelevisky exchange
matrix B equal to εT .
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The result after all n mutations is

z−ef−e1−···−er (1 + zer (1 + zer−1 · · · (1 + ze1) · · · ))
= z−ef−e1−···−er + z−ef−e1−···−er−1 + · · · + z−ef ,

as claimed. �

Using Proposition 19, we can immediately express W on the torus TM ;s0 of the initial seed
of Conf×3 (F̃�)∨.

Corollary 20. Take a, b, c ∈ Z>0. The restriction of W to TM ;s0 is

W =
∑

a+b=n

ϑ(a,b,0) +
∑

b+c=n

ϑ(0,b,c) +
∑

a+c=n

ϑ(a,0,c),

where

ϑ(a,b,0) =
n−a−1∑
i=0

z−
∑i

j=0 e(a,b−j,j) ,

ϑ(0,b,c) =
n−b−1∑
i=0

z−
∑i

j=0 e(j,b,c−j) ,

and

ϑ(a,0,c) =
n−c−1∑
i=0

z−
∑i

j=0 e(a−j,j,c) .

Note that we now have the basis B of O(Conf3(F̃�)) that we were after — it is canonically
identified with

Ξ
(
ZT

)
:=

{
WT � 0

}⋂
Conf×3 (F̃�)∨(ZT

)
.

Explicitly, the ϑ-functions ϑp is in B if and only if p is in Ξ(ZT ). This basis is canonically
determined by the pair Conf×3 (F̃�) ⊂ Conf3(F̃�). The subset Conf×3 (F̃�) is invariant under the
H×3 action on Conf3(F̃�), so B must be preserved by this action. Since B is a discrete set
and H×3 acts continuously, the only possibility is that each element of B is fixed by H×3.
The elements of B are defined up to scaling, so this means that every element of B is an
H×3-eigenfunction. The H×3 action and the weights of basis elements under this action are
discussed further in Section 4.3.

At this point we would like to see if W to pulls back to the Goncharov–Shen potential
WGS on Conf×3 (F̃�) for some carefully chosen p∗. The guideline for writing down this map
will be the representation theoretic interpretation of the cones on both sides. For this, we
will compare version (3) of the Knutson–Tao hive cone to Ξ. To have a nice representation
theoretic interpretation of Ξ, we need to relate the g-vector of a ϑ-function to its weight under
the H×3 action.

First let us review what g-vectors are and fix some notation. Given any cluster A-variety,
Gross–Hacking–Keel–Kontsevich build a family of deformations of A, denoted Aprin, that itself
has the structure of an A-variety. I recall how to build a quiver for Aprin at the beginning of
Section 3.1. A choice of seed s determines a cluster torus TN ;s in A, an action of TN ;s on Aprin,
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and a canonical extension of each cluster monomial to Aprin (simply by performing mutations
in Aprin rather than A)†. The TN ;s action is induced by the inclusion

N ↪→ N ⊕M

n 	→ (n, p∗(n)).

The extended cluster monomials are all eigenfunctions of this TN ;s action, and the weight under
this action is known as the g-vector at s for the cluster monomial. The choice of seed s also
determines an identification of X (ZT ) with M , and this weight (an element of M) is how we
explicitly associate a ϑ-function to a point in X (ZT ).

If S is a subset of some real tropical space U(RT ), define S(ZT ) to be its ZT points —
S(ZT ) := S

⋂U(ZT ). Now let p ∈ Ξ̃(ZT ) and express the g-vector of ϑp at s0 as

gs0(ϑp) =
∑

a+b+c=n

g(a,b,c)e
∗
(a,b,c).

Here {e∗(a,b,c)}(a,b,c)∈H is the dual basis to the ordered basis s0 of N . Now, gs0(ϑp) is the
exponent of the leading term of ϑp expressed as a Laurent polynomial on TN ;s0

‡. Since ϑp is an
eigenfunction of the H×3 action on C̃onf3(F̃�), the other summands must have the same weight
as zgs0 (ϑp) under this action. Represent gs0(ϑp) pictorially in the following way, illustrated for
n = 4:

g(4,0,0)

g(0,4,0)g(0,0,4) g(0,2,2)g(0,1,3) g(0,3,1)

g(2,0,2)

g(1,0,3)

g(3,0,1)

g(2,2,0)

g(3,1,0)

g(1,3,0)g(1,1,2) g(1,2,1)

g(2,1,1)gs0 (ϑp) =

.

Figure 12. Pictorial representation of gs0(ϑp) for n = 4, with obvious generalization to
arbitrary n.

Note that

zgs0 (ϑp) =
∏

a+b+c=n

A
g(a,b,c)

(a,b,c) .

Let hi = diag(hi1 , . . . , hin) ∈ H. Then

(h1, h2, h3) ·A(a,b,c) = h11 · · ·h1a
h21 · · ·h2b

h31 · · ·h3c
A(a,b,c).

Decompose λ ∈ χ∗(H) by λ(h) = h1
λ1 · · ·hn

λn . Then the following picture lets us read off the
H×3 weight (α, β, γ) of zgs0 (ϑp), and in turn ϑp (denoted w(ϑp)).

†I am restricting to the skew-symmetric case here to avoid a discussion of multipliers di and to
simplify notation.

‡The partial ordering on terms comes from the monoid of bending parameters. See [12, Section 3].
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Z Y

X

γ
4

γ
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γ
2

γ
1 α4

α3

α2

α1

β 4β 3β 2β 1

g(4,0,0)

g(0,4,0)g(0,0,4) g(0,2,2)g(0,1,3) g(0,3,1)

g(2,0,2)

g(1,0,3)

g(3,0,1)

g(2,2,0)

g(3,1,0)

g(1,3,0)g(1,1,2) g(1,2,1)

g(2,1,1)

Figure 13 (colour online). If zgs0 (ϑp) has H×3 weight (α, β, γ), then all entries on the indicated
side of a line sum to the given value. Shown for n = 4. The obvious generalization to arbitrary n
holds.

There are two immediate consequences. First,

Proposition 21. Let p ∈ Ξ̃(ZT ) and write

gs0(ϑp) =
∑

a+b+c=n

g(a,b,c)e
∗
(a,b,c).

Then ϑp is GLn-invariant (and hence p ∈ Ξ(ZT )), if and only if∑
a+b+c=n

g(a,b,c) = 0.

Next,

Proposition 22. For each (α, β, γ) ∈ χ∗(H×3), define Pα,β,γ ⊂ Ξ to be the subset cut out
by the hyperplanes described below:

Then Pα,β,γ(ZT ) parametrizes a basis for (Vα ⊗ Vβ ⊗ Vγ)G, and cγαβ = |Pα,β,−w0(γ)(ZT )|.

We now have a representation theoretic interpretation of Ξ. We will pictorially represent the
inequalities cutting out Ξ in the initial seed as follows, bearing in mind that the sum of all
entries must be 0.

Before finding the map p∗ : N → M , let us recall briefly the properties it must satisfy:
[10, p. 146]†

(1) p∗|Nuf : n 	→ {n, ·};
(2) if π : M → M/N⊥

uf is the canonical projection, then π ◦ p∗ : n 	→ [{n, ·} : Nuf → Z].

Here Nuf is the unfrozen sublattice of N — the span of {ei}i∈Iuf . Up to some map N/Nuf →
N⊥

uf , p
∗ is essentially just the exchange matrix ε. The ambiguity we can exploit — the map

†Note that M = M◦ here — all multipliers di are 1.
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Z Y

X

−
γ
1

−
γ
2

−
γ
3

−
γ
4 −α1

−α2

−α3

−α4

−β
1

−β
2

−β
3

−β
4

.

Figure 14 (colour online). Hyperplanes defining Pα,β,γ for n = 4, with obvious generalization
to arbitrary n. All entries on the indicated side of a line sum to the given value, so each line
corresponds to one hyperplane.

Figure 15 (colour online). Pictorial representation of the inequalities cutting out Ξ in the initial
seed for n = 4. The boxes indicate that the contained entry must be non-negative. Arrows indicate
that the sum of the entries along the line of the arrow, starting with the boxed entry and ending
with the entry at the tip of the arrow, must be non-negative. Each inequality corresponds to an
exponent appearing in Corollary 20. These are exactly the tail-positivity inequalities of [18].

N/Nuf → N⊥
uf — amounts to choosing pairings between frozen indices, without considering any

skew-symmetry requirements for this portion of our exchange matrix.
So we know what properties p∗ must satisfy, and we can compare Figures 11 and 14 to

further guide our efforts to write down a candidate p∗ map. First, take e(a,b,c) ∈ Nuf . Using (1)
we can immediately write down p∗(e(a,b,c)) = {e(a,b,c), ·}. For example, if we take e(2,1,1):

0 0

0

00 0

0

0

0

0

0

00 0

1

,

Figure 16. e(2,1,1).
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then p∗(e(2,1,1)) must be

0 0

0

00 0

1

0

−1

−1

1

0−1 1

0

.

Figure 17. p∗(e(2,1,1)).

Note that the sum of the entries of p∗(e(2,1,1)) is 0, as are all sums indicated in Figure 14.
So things look good so far.

Next, take e(a,b,c) ∈ Nf — the frozen sublattice. Decompose p∗(e(a,b,c)) as p∗(e(a,b,c))uf +
p∗(e(a,b,c))f . Then (2) gives us the unfrozen portion p∗(e(a,b,c))uf , and comparing Figures 11
and 14 will suggest a candidate for the frozen portion. Take for instance e(3,1,0):

0 0

0

00 0

0

0

0

0

1

00 0

0

.

Figure 18. e(3,1,0).

Then (2) gives the unfrozen portion of p∗(e(3,1,0)) as

0 0

−1

.

Figure 19. p∗(e(3,1,0))uf .

Now we use Figure 11 to find that e(3,1,0) has α = (1,−1, 0, 0), β = (0, 0, 0, 0), and
γ = (0, 0, 0, 0). So p∗(e(3,1,0)) should have top entry −α1 = −1, entries of the top two rows
summing to −α2 = 1, and all other sums from Figure 14 equal to 0. The obvious candidate
then is

Note again that the sum of the entries is 0.
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0 0

−1

00 0

0

0

1

0

1

00 0

−1

.

Figure 20. Candidate for p∗(e(3,1,0)).

···

···

1

00 0

0 0

1

00 0

−1 0�→

Figure 21. p∗ of a corner.

0

1

0 0

0

0

· · ·

· · ·

· · ·

0

1

−1 1

0

−1

· · ·

· · ·

· · ·�→

Figure 22. p∗ of an edge entry.

0

0

0 0

0

01

−1

1

−1 1

1

−10

· · · · · ·

··
·

· · · · · ·

··
·

�→

Figure 23. p∗ of an interior entry.

We can do the same procedure for every e(a,b,c). The resulting map is given by
and rotations of these. Every entry not explicitly given is 0.

So this is our proposed map p∗. It certainly satisfies (1) and (2). What we want to show now
is that p∗ gives a unimodular equivalence between version (3) of the Knutson–Tao hive cone
and Ξ in the initial seed, and furthermore that p∗W = WGS — so the representation theoretic
Goncharov–Shen potential has a purely geometric description.
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Proposition 23.

p∗W = WGS

Proof. Consider the ϑ-function ϑ(a,b,0) = (
∑n−a−1

i=0 z−
∑i

j=0 e(a,b−j,j)).

p∗ϑ(a,b,0) = p∗
(

n−a−1∑
i=0

z−
∑i

j=0 e(a,b−j,j)

)

=
n−a−1∑
i=0

z−
∑i

j=0 p∗(e(a,b−j,j))

=
n−a−1∑
i=0

z−e∗(a,b−i,i)+e∗(a−1,b−i,i+1)−e∗(a,b−i−1,i+1)+e∗(a+1,b−i−1,i)

=
n−a−1∑
i=0

A(a−1,b−i,i+1)A(a+1,b−i−1,i)

A(a,b−i,i)A(a,b−i−1,i+1)
.

The last line above is expressed in [8] as

n−a−1∑
i=0

Δa−1,b−i,i+1Δa+1,b−i−1,i

Δa,b−i,iΔa,b−i−1,i+1
.

Summing over all ϑ-functions in W yields the potential W in [8, Section 3.1], with each
monomial summand corresponding to a different rhombus inequality. �

Pictorially, p∗ identifies the inequalities defining Ξ in the initial seed with those defining the
Knutson–Tao hive cone in the following way:

⇐⇒

.

Proposition 24. The map p∗ is unimodular, so in the initial seed Ξ is unimodularly
equivalent to the Knutson–Tao hive cone.

Remark 25. Keep in mind that upon identifying our tropical spaces with real vector spaces,
the domain of p∗ will look like RH/R · 1H and the codomain will look like the subspace V of
RH in which the sum of all entries is 0. Note that if we view the two copies of RH as dual
spaces in the obvious way, then 1H⊥ is exactly V , and so the domain and codomain of p∗ are
also dual spaces.
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Proof. First note that ∑
(a,b,c)∈H

p∗
(
e(a,b,c)

)
= p∗(1H) = 0. (2)

Next, I claim that

span
Z

{
e∗(n,0,0), p

∗(e(a,b,c)

)}
(a,b,c)∈H

= ZH.

On account of (2), an immediate corollary of this claim would be that{
e∗(n,0,0), p

∗(e(a,b,c)

)}
All except one (a,b,c)∈H

is a basis for ZH, and so {
p∗
(
e(a,b,c)

)}
All except one (a,b,c)∈H

would have to be a basis for ZH ⋂
V . Since{
e(a,b,c)

}
All except one (a,b,c)∈H

is a basis for RH/R · 1H, this would establish unimodularity of p∗. On to the claim.
As seen in the proof of Proposition 23, for each rhombus defining an inequality of the

Knutson–Tao hive cone, we get a vector in the image of p∗ having 1’s as the entries of the obtuse
vertices, −1’s as the entries of the acute vertices, and 0’s elsewhere. In addition, p∗(e(n,0,0)) =
e∗(n,0,0) − e∗(n−1,0,1), displayed in Figure 21. Adding this to the vector we have associated to the
top vertical rhombus just shifts its non-zero entries 1 position southeast, giving e∗(n−1,1,0) −
e∗(n−2,1,1).

···

···

···

1

00 0

−1 0

−1

−10 0

1 1

0

−10 0

0 1+ =

We can use the other vertical rhombi along the northeast border to shift these entries along
the rest of the border, ending with the vector e∗(1,n−1,0) − e∗(0,n−1,1). Now take the image of
the southeast corner: p∗(e(0,n,0)) = e∗(0,n,0) − e∗(1,n−1,0). Adding this to our previous result of
e∗(1,n−1,0) − e∗(0,n−1,1) gives e∗(0,n,0) − e∗(0,n−1,1).

· · · · · · · · ·
0

−10 0

0 1

0

00 1

0 −1

0

−10 1

0 0+ =
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We can use the other collection of rhombi along the northeast border to shift the non-zero
entries of this vector northwest along the border, starting with the rhombus containing the
southeast corner (0, n, 0).

· · · · · · · · ·
0

−10 1

0 0

0

10 −1

−1 1

0

00 0

−1 1+ =

So we have found two vectors in the image of p∗ to associate to each vertex v(a,b,1) along
the c = 1 line of H: e∗(a+1,b,0) − e∗(a,b,1) oriented diagonally and e∗(a,b+1,0) − e∗(a,b,1) oriented
horizontally. Now introduce e∗(n,0,0). Since e∗(n,0,0) − e∗(n−1,0,1) and e∗(n,0,0) are in

Λ := span
Z

{
e∗(n,0,0), p

∗(e(a,b,c)

)}
(a,b,c)∈H

,

so is e∗(n−1,0,1). Next we use the other vector associated to v(n−1,0,1) (the horizontally oriented
one e∗(n−1,1,0) − e∗(n−1,0,1) this time) to see that e∗(n−1,1,0) is also in Λ. We then go one step
southeast to the vertex v(n−2,1,1) and repeat this process, starting with the diagonally oriented
vector and following up with the horizontally oriented vector, to find that e∗(n−2,1,1) and
e∗(n−2,2,0) are in Λ as well. Continuing southeast gives every e∗(a,b,c) with c = 0 or 1. Now
we will push toward the southwest corner using rhombi of the only remaining orientation. For
each vertex v(a,b,2) along the c = 2 line, there is a single rhombus having this as one of its
vertices, two vertices with c = 1, and one vertex with c = 0. Combining the vector associated
to this rhombus with {e∗{a,b,c}}c=0 or 1, we find that e∗(a,b,2) is also in Λ. Repeat this for c = 3,
then 4, and so on out to n. So each e∗(a,b,c) is in Λ, and Λ = ZH, completing the proof. �

4.3. Discussion of H×3 action and the weight map

Let p∗2 be the composition N
p∗
−→ M

π−→ M/Nuf
⊥, and denote the kernel of p∗2 by K. The

inclusion K ⊂ N induces an inclusion of tori TK ⊂ TN , and so an action of TK on TN .
Furthermore, it induces a map

TM = Spec (k[N ]) → T ∗
K = Spec (k[K]).

Since p∗ commutes with mutation,

(1) it defines a map p : Conf×3 (F̃�) → Conf×3 (F̃�)∨;
(2) the action of TK on TN extends to an action on Conf×3 (F̃�) =

⋃
s TN ;s;

(3) it gives a map Conf×3 (F̃�)∨ =
⋃

s TM ;s → T ∗
K .

This is discussed in greater detail in [10, Section 2].
Here I will identify the action of TK on Conf×3 (F̃�) with the H×3 action, and the

tropicalization of (3) with the map w sending p ∈ Conf×3 (F̃�)∨(ZT ) to the H×3-weight of the
corresponding ϑ-function w(ϑp).

The H×3 action scales the decorations (x•, y•, z•). We decompose h ∈ H×3 as

h = ((hx1 , . . . , hxn
), (hy1 , . . . , hyn

), (hz1 , . . . , hzn)),
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where, for example, hxi
is the scale factor for xi. Each component defines a one-parameter

subgroup of TN , which we will show is in fact contained in TK . For instance, take n = 5. Then
the scaling coming from hx3 can be represented by

1

1

1

hx3

hx3

hx3

1

1

1

hx3

hx3

1

1

1

hx3

1

1

1

1

1

1 .

For arbitrary n, hxi
corresponds to the cocharacter

nxi
:=

∑
(a,b,c)∈H,a�i

e(a,b,c),

hyi
to

nyi
:=

∑
(a,b,c)∈H,b�i

e(a,b,c),

and hzi to

nzi :=
∑

(a,b,c)∈H,c�i

e(a,b,c).

Proposition 26.

K = span
Z
{nxi

, nyi
, nzi}1�i�n

In other words, the H×3 action on Conf×3 (F̃�) is precisely the TK action induced by the inclusion
K ⊂ N .

Proof. We will show that

span
Z
{p∗(nxi

), p∗(nyi
), p∗(nzi)}1�i�n = N⊥

uf .

This implies containment in K, and unimodularity of p∗ boosts this containment to an equality.
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We simply compute

p∗(nxi
) = p∗

⎛⎝ ∑
(a,b,c)∈H,a�i

e(a,b,c)

⎞⎠
= p∗

(
e(n,0,0)

)
+

n−1∑
a=i

p∗
(
e(a,0,n−a)

)
+

n−1∑
a=i

p∗
(

n−a∑
b=1

e(a,b,n−a−b)

)

= e∗(n,0,0) − e∗(n−1,0,1) +
n−1∑
a=i

e∗(a,0,n−a) − e∗(a,1,n−a−1) − e∗(a−1,0,n−a+1) + e∗(a−1,1,n−a)

+
n−1∑
a=i

−e∗(a+1,0,n−a−1) + e∗(a,0,n−a) + e∗(a,1,n−a−1) − e∗(a−1,1,n−a)

= e∗(n,0,0) − e∗(n−1,0,1) + e∗(n−1,0,1) − e∗(n−1,1,0) − e∗(i−1,0,n−i+1) + e∗(i−1,1,n−i)

−e∗(n,0,0) + e∗(i,0,n−i) + e∗(n−1,1,0) − e∗(i−1,1,n−i)

= e∗(i,0,n−i) − e∗(i−1,0,n−i+1).

Similarly,

p∗(nyi
) = e∗(n−i,i,0) − e∗(n−i+1,i−1,0)

and

p∗(nzi) = e∗(0,n−i,i) − e∗(0,n−i+1,i−1).

Then clearly

span
Z
{p∗(nxi

), p∗(nyi
), p∗(nzi)}1�i�n = N⊥

uf ,

(recall that N = ZH/1H · Z) and so

K = span
Z
{nxi

, nyi
, nzi}1�i�n. �

To see that (3) tropicalizes to the weight map, first restrict to tori for a fixed seed s. Then
ϑp is a finite sum of characters on TN ;s, and since ϑp is an H×3 eigenfunction, each of these
characters has the same H×3 = TK weight. Let one of the characters be zm. Then the weight
of ϑp under the TK action is the map zk 	→ z〈k,m〉 for zk ∈ TK . In other words, the TK weight
of zm is (m mod K⊥) ∈ K∗†. The map m 	→ m mod K⊥ dualizes the inclusion K ↪→ N , so
for each seed s the weight of ϑp is the tropicalization of (3). Since this holds when we restrict
to every torus, it holds for all of Conf×3 (F̃�)∨.

As alluded to previously, there is a related action on Aprin. Let K̃ be the kernel of

N ⊕M → M/N⊥
uf

(n,m) 	→ p∗2(n) −m.

The surjection π : Aprin → TM is TK̃ -equivariant. The fact that the exchange matrix is full
rank implies that π is isomorphic to the trivial bundle Conf×3 (F̃�) × TM [12, Lemma B.7]. This

†As a sanity check, note that in the scattering diagram approach of [12], all scattering functions have the

form (1 + zp
∗(n))c for some n ∈ Nuf and c ∈ Z>0. As a result, the exponents of the summands of ϑp differ by

elements p∗(Nuf). It is straightforward to check that p∗(Nuf) ⊂ K⊥, so all of the summands of ϑp do indeed
have the same weight.



LITTLEWOOD–RICHARDSON COEFFICIENTS VIA MIRROR SYMMETRY 503

is used in [12, Proof of Corollaries 0.20 and 0.21, p. 581] to translate basis results for Aprin to
Conf3(F̃�).

4.4. Ray representation of Ξ

In [16], I showed that for the decorated flag variety, the cone ΞF̃� is generated by the g-vectors
for Plücker coordinates. This is probably the most natural generating set for the homogeneous
coordinate ring of the flag variety, and I wonder if the generators of Ξ can fill this role for
Conf3(F�). This is necessarily vague and subjective. I am primarily asking if the ϑ-functions
corresponding to generators of Ξ in the initial seed have a simple explicit description. In this
subsection, I describe the rays generating Ξ and give partial results relating these rays to
functions. Since Ξ is not strictly convex for G = GLn, we will temporarily restrict to SLn.

Proposition 27. The g-vectors of all frozen variables generate edges of Ξ.

Proof. These g-vectors have a single non-zero entry. The frozen variable A(a,b,c) has a 1 in
the (a, b, c) position, which is on a boundary edge of the triangle in Figure 1. For example, in
SL4 the entries of the g-vector for A(2,0,2) are

00 0

1

0

0

0

0

00 0

0

.

Figure 24. Pictorial representation of the g-vector of A(2,0,2).

We can include the boxes and arrows representing the defining inequalities of Ξ:

00 0

1

0

0

0

0

00 0

0

.

Figure 25 (colour online). Pictorial representation of the g-vector of A(2,0,2) and the
inequalities of Ξ. Boxes and arrows representing strict inequalities are red.

The line spanned by such a g-vector is the intersection of the hyperplanes defined by the
boxes for the remaining frozen variables and the arrows parallel to the boundary edge containing
v(a,b,c). So for A(2,0,2), we get the line described by the following picture:

00 0

x

0

0

0

0

00 0

0

.
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The ray R�0 · g(A(a,b,c)) contained in this line satisfies the remaining inequalities and is an
edge of Ξ. �

Proposition 28. The g-vectors of all initial seed variables generate edges of Ξ.

Proof. Proposition 27 took care of the frozen variables. For the unfrozen variable A(a,b,c),
there is a 1 in the interior of our triangle with every other entry 0. For starters, take the
hyperplanes defined by each box. Then fix a box and add as many consecutive arrows in the
string emanating from it as possible without hitting v(a,b,c). Doing this for all boxes gives
enough hyperplanes to determine the line given by a free parameter in position v(a,b,c) and
0 elsewhere. It really gives more hyperplanes than needed, but that is not a problem. For
example, for A(2,1,1) we would have the following picture:

00 0

0

0

0

0

0

00 0

x

.

The ray R�0 · g(A(a,b,c)) contained in this line satisfies the remaining inequalities and is an
edge of Ξ. �

The functions associated to the remaining edges take more effort to describe. We will figure
out what these edges actually are before worrying what functions they might correspond to.
Consider for a moment the inequalities represented by arrows. These are described in Figure 15.
Staring at this for a little while suggests the following picture for some of the remaining rays
of Ξ. Take an interior vertex v(a,b,c). There are three subquivers QL (from Proposition 17)
starting at a frozen vertex and ending at v(a,b,c). Draw a line segment through the vertices of
each of these subquivers. Here is an example:

.

Figure 26 (colour online). Here we have chosen the interior vertex v(2,1,1). The relevant
subquivers QL are black instead of gray. The line segments of interest are dotted orange.

Now put a ‘−1’ in the (a, b, c) position, a single ‘1’ along each of the three segments, and ‘0’
elsewhere. The idea is that each of the three arrows pointing to v(a,b,c) indicate that the sum
of the entries along one of the three segments should be non-negative. If we make any entry
negative, we will get something outside of the cone generated by vectors in Propositions 27
and 28. The construction described is the simplest way to achieve this without violating
any inequalities.

Let us call such a picture a trivalent vertex.

Proposition 29. The vectors associated to trivalent vertices generate edges of Ξ.
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01 0

0

0

1

1

0

00 0

−1

.

Figure 27 (colour online). This vector generates a ray of Ξ. Strict inequalities are blue. See
Proposition 29 for the proof.

Proof. Consider all of the hyperplanes defining faces of Ξ. It is easiest to say which to
exclude from our intersection. Essentially, we want to intersect all of the hyperplanes associated
to inequalities that should reduce to equalities for the vector in question, and only these
hyperplanes. So in Figure 27, we would remove exactly the blue boxes and arrows corresponding
to strict inequalities, and the intersection of the remaining hyperplanes is a line containing the
given vector. To do this for an arbitrary vector associated to a trivalent vertex, we start by
going to the position of the entry 1 along each line segment. If this is not on the boundary,
then the box at the end of the line segment and all arrows leading to this entry apart from
the last one give equalities. But the arrow whose tip hits this entry gives a strict inequality, as
do the arrows coming after it, until we get to the arrow whose tip hits the −1 entry. So given
the segment

−1 1 ,

Figure 28 (colour online). Example line segment.

we would not include the following hyperplanes in the intersection:

−1 1 .

Figure 29 (colour online). The blue arrows give strict inequalities, so we exclude the
corresponding hyperplanes from the intersection that will yield the span of our vector.

Do this for all three line segments and then intersect all remaining hyperplanes. The result
is the real span of the given vector, and its R�0 span also satisfies the inequalities that have
been omitted from the intersection. �

The next thing to notice is that we can overlay two trivalent vertices, and as long as none
of the line segments are colinear we will have two line segments intersecting at a vertex. If we
make the entry of this vertex 1, we will get a vector outside the span of the vectors previously
described. For example, take
which gives the vectors
and

Consider either of these two vectors. If it were the sum of vectors described previously, we
would have to take at least two vectors associated to trivalent vertices to account for the two
minus signs. Then the sum of all entries must be at least 4, but it is in fact only 3. So it is
indeed outside of the span of the vectors described previously, and it clearly lies in our cone.
The proof that it generates an edge of Ξ is basically identical to the proof of Proposition 29.

Next, there is no reason to limit ourselves to only overlaying two trivalent vertices. We can
overlay as many as we want. Say we overlay k of them. Then we are describing vectors for
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Figure 30 (colour online). Two trivalent vertices overlaid.

0 1 0 0

1

0

1

01

0

0

0 0 −1 0

0

−1

1

Figure 31 (colour online). A vector associated to the overlaid trivalent vertices of Figure 30.
Strict inequalities are blue.

0 1 0 0

0

0

1

01

0

0

0 0 −1 1

0

−1

1

.

Figure 32 (colour online). A vector associated to the overlaid trivalent vertices of Figure 30.
Strict inequalities are blue.

which k entries are −1. As long as we place our 1’s in such a way that our vector cannot be
a positive combination of the vectors associated to k − 1 or fewer trivalent vertices, we will
get an edge of Ξ by the argument used above. In particular, if we ensure that the sum of the
entries is less than could be achieved with such positive combinations, our vector must be an
edge of Ξ.

Proposition 30. Every edge of Ξ is generated by an initial seed g-vector, a trivalent vertex,
or overlaid trivalent vertices.

Proof. The initial seed g-vectors already generate the entire positive orthant, so any
additional edge of Ξ must have some negative entry. Negative entries must be at interior
vertices on account of the box inequalities. Say the entry at (a, b, c) is negative, with value −x.
Then the three incoming arrows at v(a,b,c) indicate that the sum of the remaining entries along
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each of the three line segments leading to v(a,b,c) must be at least x. However, if the sum is
more than x, we would be able to realize this vector as a sum of vectors from trivalent vertices
and vectors in the positive orthant. You can see this by restricting to a line segment first. It is
easy to see for this restriction, and the result transfers over directly as the trivalent vertices are
made up of three line segments, and the position of a 1 along one line segment is completely
independent of the other two line segments. It follows that if some edge of Ξ lies outside of the
positive orthant, it must be generated by a trivalent vertex or a collection of overlaid trivalent
vertices. So this is indeed all of the edges of Ξ. �

Proposition 31. Consider the trivalent vertex p having 1’s in positions (a1, b1, c1),
(a2, b2, c2), and (a3, b3, c3), labeled such that the top left 1 is in position (a1, b1, c1), the
rightmost 1 is at (a2, b2, c2), and the bottom left 1 is (a3, b3, c3). Now take the triangle � with
sides b = b1 + 1, c = c2 + 1, and a = a3 + 1. Then ϑp is obtained by performing the maximal
green sequence of Proposition 10 on the subquiver with vertices �.

Let us illustrate the claim first. Suppose we take

1 0 0 0

0

0

0

00

1

0

0 0 0 0

1

0

−1
p =

.

Then ϑp is produced by the mutation sequence

2 3

1

then

4

.
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Proof. Each vertex of mutation in this sequence is green, so when mutating at vk the
terms coming from arrows emanating from vk vanish on the central fiber of Aprin,s0 . Only
those arrows terminating at vk contribute to the g-vector. Let A(a,b,c)k be the cluster variable
obtained after the kth mutation at v(a,b,c) in the sequence. Then, using the quivers from the
proof of Proposition 10, gs0(A(a,b,c)k) is given by

gs0

(
A(n−b1−c2−k,b1,c2+k)

)
+ gs0

(
A(a−k+1,b+k,c2)

)
+ gs0

(
A(a−1,b,c+1)k−1

)
− gs0

(
A(a,b,c)k−1

)
if c = c2 + 1, and

gs0

(
A(a+1,b,c−1)k

)
+ gs0

(
A(a−1,b,c+1)k−1

)
− gs0

(
A(a,b,c)k−1

)
otherwise. I claim that the for each v(a,b,c) ∈ �,

gs0

(
A(a,b,c)k

)
= e∗(n−b1−c2−k,b1,c2+k) + e∗(n−b−c2−k,b+k,c2)

+ e∗(a−k,b,c+k) − e∗(n−b−c2−k,b,c2+k).

For k = 1, gs0(A(a,b,c)1) is given by

e∗(n−b1−c2−1,b1,c2+1) + e∗(a,b+1,c2)
+ e∗(a−1,b,c+1) − e∗(a,b,c)

if c = c2 + 1, in agreement with the claim, and

gs0

(
A(a+1,b,c−1)1

)
+ e∗(a−1,b,c+1) − e∗(a,b,c)

otherwise. When c− 1 = c2 + 1, we have

gs0

(
A(a+1,b,c2+1)1

)
= e∗(n−b1−c2−1,b1,c2+1) + e∗(a+1,b+1,c2)

+ e∗(a,b,c) − e∗(a+1,b,c2+1),

so

gs0

(
A(a,b,c2+2)1

)
= e∗(n−b1−c2−1,b1,c2+1) + e∗(a+1,b+1,c2)

+ e∗(a−1,b,c2+3) − e∗(a+1,b,c2+1),

which again agrees with the claim. Assume the claim holds for all c′ < c. Then

gs0

(
A(a,b,c)1

)
=

(
e∗(n−b1−c2−1,b1,c2+1) + e∗(n−b−c2−1,b+1,c2)

+ e∗(a,b,c) − e∗(n−b−c2−1,b,c2+1)

)
+ e∗(a−1,b,c+1) − e∗(a,b,c)

= e∗(n−b1−c2−1,b1,c2+1) + e∗(n−b−c2−1,b+1,c2)
+ e∗(a−1,b,c+1) − e∗(n−b−c2−1,b,c2+1),

which proves the claim for k = 1. Now suppose it holds for all k′ < k. Then gs0(A(a,b,c2+1)k)
is given by

e∗(n−b1−c2−k,b1,c2+k) + e∗(a−k+1,b+k,c2)

+
(
e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k,b,c2+1+k) − e∗(n−b−c2−k+1,b,c2+k−1)

)
− (

e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k+1,b,c2+1+k−1) − e∗(n−b−c2−k+1,b,c2+k−1)

)
= e∗(n−b1−c2−k,b1,c2+k) + e∗(a−k+1,b+k,c2) + e∗(a−k,b,c2+1+k) − e∗(a−k+1,b,c2+k),

in agreement with the claim, and gs0(A(a,b,c)k), c �= c2 + 1, is given by

gs0

(
A(a+1,b,c−1)k

)
+

(
e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k,b,c+k) − e∗(n−b−c2−k+1,b,c2+k−1)

)
− (

e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k+1,b,c+k−1) − e∗(n−b−c2−k+1,b,c2+k−1)

)
= gs0

(
A(a+1,b,c−1)k

)
+ e∗(a−k,b,c+k) − e∗(a−k+1,b,c+k−1).
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As before, when c− 1 = c2 + 1, we have

gs0

(
A(a+1,b,c2+1)k

)
= e∗(n−b1−c2−k,b1,c2+k) + e∗(a−k+2,b+k,c2)

+ e∗(a+1−k,b,c2+1+k) − e∗(a−k+2,b,c2+k),

which agrees with the claim. So suppose it holds for all c′ < c. Then

gs0

(
A(a,b,c)k

)

= gs0

(
A(a+1,b,c−1)k

)
+ gs0

(
A(a−1,b,c+1)k−1

)
− gs0

(
A(a,b,c)k−1

)

=
(
e∗(n−b1−c2−k,b1,c2+k) + e∗(n−b−c2−k,b+k,c2) + e∗(a−k+1,b,c+k−1) − e∗(n−b−c2−k,b,c2+k)

)
+

(
e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k,b,c+k) − e∗(n−b−c2−k+1,b,c2+k−1)

)
− (

e∗(n−b1−c2−k+1,b1,c2+k−1) + e∗(n−b−c2−k+1,b+k−1,c2) + e∗(a−k+1,b,c+k−1) − e∗(n−b−c2−k+1,b,c2+k−1)

)
= e∗(n−b1−c2−k,b1,c2+k) + e∗(n−b−c2−k,b+k,c2) + e∗(a−k,b,c+k) − e∗(n−b−c2−k,b,c2+k).

This proves the claim.
Now take k = c1 − c2, and take (a, b, c) = (a3 + c1 − c2, b3, c2 + a2 − a3). Then

gs0

(
A(a,b,c)k

)
= e∗(a1,b1,c1)

+ e∗(n−b3−c1,b3+c1−c2,c2)
+ e∗(a3,b3,a2−a3+c1)

− e∗(n−b3−c1,b3,c1)

= e∗(a1,b1,c1)
+ e∗(a2,b2,c2)

+ e∗(a3,b3,c3)
− e∗(a2,b3,c1)

,

proving the proposition. �

Taking � = �n−2 leads to a nice observation about the maximal green sequence of
Proposition 10. Call the final seed of the sequence s.

Corollary 32. Let μMGS be the automorphism of Conf3(F̃�) induced by the maximal
green sequence of Proposition 10, along with the indicated permutation of frozen vertices.
Then the assignment

A(a,b,c)s0
	→ μ∗

MGS

(
A(a,b,c)s

)
induces an automorphism of O(Conf3(F̃�)) sending (Vα ⊗ Vβ ⊗ Vγ)G to (V ∗

α ⊗ V ∗
γ ⊗ V ∗

β )G.

Proof. Since the only difference between Qs and Qs0 is the overall orientation, the variables
of s and s0 have the same relations — given the relation

r
(
A(a1,b1,c1)s0

, . . . , A(ai,bi,ci)s0

)
= 1,

the relation

r
(
μ∗

MGS

(
A(a1,b1,c1)s

)
, · · · , μ∗

MGS

(
A(ai,bi,ci)s

))
= 1

must hold as well. By Theorem 1, every ϑp ∈ Ξ(ZT ) is a Laurent polynomial in either of these
two collections of variables. Since Ξ(ZT ) generates O(Conf3(F̃�)) and the relations between
the two (identical but reordered) generating sets Ξ(ZT ) match, this assignment gives an
automorphism of O(Conf3(F̃�)).

Now the claim is that if some ϑp has H×3-weight (α, β, γ), then its image ϑ′
p under this

automorphism has H×3-weight (−w0(α),−w0(γ),−w0(β)). It is sufficient to show that this
holds for the cluster variables of s0. The weight of A(a,b,c)s0

is((
hx1 , . . . , hxn−1

)
,
(
hy1 , . . . , hyn−1

)
,
(
hz1 , . . . , hzn−1

)) 	→ hx1 · · ·hxa
hy1 · · ·hyb

hz1 · · ·hzc .
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For the weight of μ∗
MGS(A(a,b,c)s), take k = a and b1 = c2 = a3 = 0 in the proof of Proposi-

tion 31. This yields

gs0

(
A(a,b,c)s

)
= e∗(n−a,0,a) + e∗(n−b−a,b+a,0) + e∗(0,b,c+a) − e∗(n−b−a,b,a)

= e∗(n−a,0,a) + e∗(c,n−c,0) + e∗(0,b,n−b) − e∗(c,b,a),

so the weight is((
hx1 , . . . , hxn−1

)
,
(
hy1 , . . . , hyn−1

)
,
(
hz1 , . . . , hzn−1

)) 	→ hx1 · · ·hxn−a
hy1 · · ·hyn−c

hz1 · · ·hzn−b
.

This proves the claim†. �

It is not clear yet whether the rays of Ξ correspond to a ‘simple’ collection of functions, but
I hope that observations in this subsection provide a foundation for addressing this question.

5. Recovering F̃� and U from Conf3(F̃�)
The decorated flag variety F̃� is a partial minimal model for the double Bruhat cell Ge,w0 . Fix
B+, B− ⊂ G to be the subgroups of upper and lower triangular matrices, and take V +

• and
V −
• to be their fixed flags. Then Ge,w0 ⊂ F̃� is the subset whose underlying flags F• intersect

both V +
• and V −

• generically. That is, F = (F•, f•) is in Ge,w0 if and only if each subspace Fi

intersects both V +
n−i and V −

n−i transversely.
This description, while satisfyingly simple, involves a choice — fixing the pair (B+, B−).

It would be philosophically more appealing to have a description that avoids such choices.
So, instead of choosing a single pair, we will choose all pairs at once, and later we
will mod out to identify all of these choices. First note that G = GL(V ) acts freely and
transitively on the generic locus (F̃�×F�)× of F̃�×F�. It is clear that G acts freely and
transitively on ordered bases for V , and the correspondence between ordered bases and
generic pairs ((X•, x•), Y•) is straightforward. Given an ordered basis (v1, . . . , vn), set Xi :=
span{v1, . . . , vi}, Yn−i := span{vi+1, . . . , vn}, and xi := vi mod Xi−1. On the other hand,
given a generic pair ((X•, x•), Y•), note that xi+1 can be identified with an i-dimensional
affine subspace of Xi+1: xi+1‘=’{v ∈ Xi+1|v mod Xi = xi+1}. Then xi+1 and Yn−i intersect
in a point since Xi and Yn−i do, and xi+1 is just a translation of Xi. Set vi+1 := xi+1

⋂
Yn−i.

These two maps are clearly inverses of each other. Now we can view F̃� as the subset of
Conf(F̃�, F̃�,F�) with (A1, B3) generic, and Ge,w0 as Conf(F̃�, F̃�,F�)×. The above description
is based on [8].

So we start with Conf×3 (F̃�)∨(ZT ) and then take the slice whose Hz weight γ is 0†. This
gives us a basis for O(Ge,w0). When we partially compactify to F̃�, we still ask for the first
and third flags to intersect generically, so we are leaving off the divisors D(i,0,n−i). Then in the
initial seed, the Landau–Ginzburg potential in this case is

WF̃� =
∑

a+b=n

ϑ(a,b,0) +
∑

b+c=n

ϑ(0,b,c),

where a, b, c ∈ Z>0,

ϑ(a,b,0) =
n−a−1∑
i=0

z−
∑i

j=0 e(a,b−j,j) ,

†Recall that G = SLn here.
†As in Remark 8, using this condition we could recover the usual cluster structure for this space by defining

a new collection of variables, say A(a,b,c) := A(a,b,c)/A(0,n−c,c). But the point here is to avoid making choices,
so we will not do that.
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and

ϑ(0,b,c) =
n−b−1∑
i=0

z−
∑i

j=0 e(j,b,c−j) .

It is immediate from Proposition 23 that WF̃� pulls back to the potential of [8] on
Conf(F̃�, F̃�,F�). Furthermore, Proposition 24 and [8, Theorem 3.2] immediately imply that
ΞF̃� is unimodularly equivalent to the Gelfand–Tsetlin cone. The polytope in ΞF̃� where
β = −w0(λ) parametrizes a canonical basis for the irreducible representation Vλ.

Remark 33. There is one semantic caveat worth mentioning here. I have generally seen
the term ‘Gelfand–Tsetlin cone’ applied to a strictly convex cone encoding polynomial GLn

representations. O(F̃�) decomposes as a sum of rational GLn representations, which include
duals of polynomial representations. Essentially, det is an invertible function on GLn and this
gives ΞF̃� a 1-dimensional linear subspace. That said, the cone defined by Gelfand and Tsetlin
in [7, Equation 3] encodes rational representations and is the cone identified with ΞF̃� by p∗.

Using [8, Figure 31], the inequalities defining ΞF̃� and the Gelfand–Tsetlin cone are identified
via p∗ as follows:

⇐⇒

.

Figure 33 (colour online). Correspondence between inequalities defining ΞF̃� in the initial seed
and the Gelfand–Tsetlin cone for n = 4. For the Gelfand–Tsetlin cone, an arrow indicates that
the entry at the tail is at least as large as the entry at the tip.

Goncharov and Shen describe their potential as part of a 6-tuple defining a positive decorated
geometric crystal. In this setting, p∗W = WGS plays the role of Berenstein and Kazhdan’s
potential f from [2]. See the appendix in the arXiv version of [8] for details.

To describe U in this way, we view F� as the subset of Conf(F̃�,F�,F�) with (A1, B3)
generic, U as the subset where (A1, B2) is also generic, and the cluster variety Ů in U as
Conf×(F̃�,F�,F�). Usually Ů is described as the subset of U (upper triangular unipotent
matrices) where the minors Δ1,...,i

n−i+1,...,n are non-vanishing. Here we are getting to U from
F� by requiring (A1, B2) to be generic, and we get to Ů from U by requiring (B2, B3) to
be generic.

A basis for O(Ů) is given by taking the slice of Conf×3 (F̃�)(ZT ) with Hy ×Hz weight
(β, γ) = 0. When we partially compactify to U , the divisors that we add are D(0,i,n−i). The
corresponding inequalities are the solid (as opposed to dashed) boxes and arrows of Figure 33.
Then ΞU is a simplicial cone of dimension

(
n
2

)
.
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