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ARTICLE

Machine learning for cluster analysis of localization
microscopy data
David J. Williamson 1, Garth L. Burn1, Sabrina Simoncelli1,2, Juliette Griffié1, Ruby Peters1, Daniel M. Davis 3 &

Dylan M. Owen 1,4✉

Quantifying the extent to which points are clustered in single-molecule localization micro-

scopy data is vital to understanding the spatial relationships between molecules in the

underlying sample. Many existing computational approaches are limited in their ability to

process large-scale data sets, to deal effectively with sample heterogeneity, or require sub-

jective user-defined analysis parameters. Here, we develop a supervised machine-learning

approach to cluster analysis which is fast and accurate. Trained on a variety of simulated

clustered data, the neural network can classify millions of points from a typical single-

molecule localization microscopy data set, with the potential to include additional classifiers

to describe different subtypes of clusters. The output can be further refined for the mea-

surement of cluster area, shape, and point-density. We demonstrate this approach on

simulated data and experimental data of the kinase Csk and the adaptor PAG in primary

human T cell immunological synapses.
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Once raw single-molecule localization microscopy (SMLM)
data have been obtained and the positions of emitters
localized, there is the further challenge of how to effec-

tively analyze the resulting data. Whereas images from wide-field
or confocal microscopes are composed of arrays of pixels, the data
from SMLM1,2 are fundamentally a list of coordinates, each
representing the spatial location of a point-emitter. This list can
be plotted and rasterized for examination with conventional
image analysis tools, but an ideal method would operate on the
original coordinate data without requiring its transformation. A
distribution of points within the imaging field can be interrogated
using spatial point pattern analyses to reveal the spatial rela-
tionships between the points and higher-scale relationships
between clusters of points, or between points from different
imaging channels. Such techniques include Ripley’s K Function3,
and a local generalization as Getis & Franklin’s local point pattern
analysis4, as well as the radial distribution (or pair correlation)
functions5, and DBSCAN6.

Common among many of these approaches is the selection of
analysis parameters, which can lead to a suboptimal interpreta-
tion of the data, for example, when points are clustered at a
different spatial scale to the one used for assessment or
when points are not homogeneously clustered. These situations
are common in the case of complex data from biological speci-
mens. Often these methods also require a threshold setting in
order to label points as 'clustered’ or ‘not clustered’. As the
clustering values can depend strongly on the overall density and
arrangement of points, it is likely that the appropriate threshold
for one image will be unsuitable for the next. A solution can be
found in model-based cluster analysis, such as Bayesian infer-
ence7, where cluster analysis outputs are scored against a model
of clustering, allowing the best-scoring set of analysis parameters
to be selected. Although this method removes the problem of
selecting the “best” parameters, it is computationally intensive
and therefore not practical for large data sets, typically requiring
the use of cropped regions-of-interest selected from each image8.

Machine learning is a computational and statistical approach to
extract meaningful information from complex data where a fully
descriptive model is not otherwise available. Machine learning
has developed rapidly within the field of artificial intelligence,
where it has been predominantly employed in the service of
problems such as facial recognition, autonomous vehicle navi-
gation, and speech recognition. Two principal approaches to
conducting machine learning are either as supervised or unsu-
pervised. Supervised learning requires examples of known labels
or patterns, which are then used to extract similar patterns from
unfamiliar data. In unsupervised learning, data sets are used to
discover new patterns and labels, without any prior information.
One of the tools used in machine learning is that of neural net-
works where ‘neurons’ are self-contained units capable of
accepting input, processing that input, and generating an output.
Neurons performing similar functions can be grouped together as
layers, and layers can be connected to form the neural network.
The machine can adjust the internal parameters of the layers in
order to optimize the network’s performance in translating the
given input into the desired output.

Machine learning, when applied to microscopy images, often
uses convolutional neural networks to examine raster-based
images. Such networks were originally developed and refined to
solve computer vision problems and have proven useful in the
identification and extraction of abstract features from images.
However, localization microscopy data are not immediately
compatible with convolutional neural networks. Here, we employ
machine learning to solve realistic cluster identification problems
in SMLM data sets by training a neural network to extract fea-
tures from nearest-neighbor distance-derived data, where such

data might be acquired by (F-)PALM1,9, (d)STORM2,10, GSD
(IM)11,12, or (DNA-)PAINT13,14 techniques. Note, however, that
the network does not correct for artifacts inherent to the sample
preparation or imaging of these individual SMLM methods (such
as fluorophore re-blinking and sample drift). These arti-
facts should be corrected for beforehand, or the results inter-
preted in their context.

A set of software modules is presented to prepare raw data,
train new models, evaluate data with trained modules, and
describe cluster properties. A quantitative comparison with other
methods demonstrates the accuracy of the approach, with benefits
of being able to access arbitrary regions-of-interest from very
large data sets and rapid processing time.

Results
Model specification, implementation and workflow. The mod-
els described here operate on each point from a data set con-
sisting of a list of x and y coordinates, in turn. Each model’s input
is an array of values derived from each point’s nearest-neighbor
distances and its output is a binary label, indicating whether the
point has been classified as either ‘not clustered’ or ‘clustered’.

For a point within a spatial point-pattern, a sequence can be
constructed of the distances from that point to its neighbors.
The monotonic sequence of near-neighbor distances (or the
difference in distances between consecutive near neighbors) are
here used as input for machine learning models. Models were
constructed using Keras15, an open-source machine-learning
framework for Python, which assembles neural network layers
in a linear sequence. A complete model comprises the sequence of
processing layers and their various internal values. These internal
values are adjusted during the training process to maximize the
accuracy of the model by comparing the model’s final output with
the expected output and, over many training iterations, the
model’s configuration converges to its most capable configuration.

The workflow, with specific Python scripts used at different
stages, is shown in Fig. 1. To begin training a new model, data
with known clustering characteristics are simulated and prepared
by measuring the distances for each point to its N nearest
neighbors. Next, a model configuration is specified in Keras as a
sequential stack of layers; each performing a specific processing
task on the input. Three example models are described here;
models are given a unique six-character name to help identify and
differentiate between them.

One model, designated ‘XPILJZ’, consists of an input layer for
100 near-neighbor values followed by two fully connected layers
and an output layer indicating if the input values describe a point
that is clustered or not clustered. This model presents a very
simple arrangement of layers for feature extraction and
classification.

Another model, 07VEJJ, also uses 100 near neighbor input
values but contains additional layers: a one-dimensional con-
volutional layer is employed to exploit any existing correlation
between the near neighbor distances. Max pooling layers are
employed to extract prominent features from the data (such as a
large change in near neighbor distance) and dropout layers are
used to reduce overfitting of the model to the training data. In
addition, two long short-term memory (LSTM) layers are used, as
they were expected to increase classification accuracy owing to
the sequential nature of the input data16. An LSTM is a type of
recurrent neural network formed from a chain of network units,
which allows information to persist (as ‘memory’) and allows the
network to learn long-term dependencies from the input
sequence. Furthermore, stacking LSTM layers (as in model
07VEJJ) may permit a deeper abstraction of the input sequence
and help boost the model’s accuracy17.
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The number of near neighbors used for input should exceed
the anticipated number of points in the largest cluster (by point
count) in the data. For this reason, we created a third model,
87B144, with the same layer configuration as 07VEJJ except for
the input layer, which requires 1000 near neighbor distances as
input. This model is expected to be able to identify points in data
sets featuring larger, denser clusters but at the expense of
increased computational and memory costs.

Simulated data sets were generated to resemble experimental
clustered distributions with the distribution of points restricted
within a ‘cell-like’ shape, mimicking a T-cell synapse formed
against a flat surface and imaged by total internal reflection
fluorescence (TIRF) microscopy18,19. This was done to represent
the gross morphology seen in a typical cell synapse, such as

membrane protrusions with uneven edges, and other constrained
geometries. Within the cell-like shape, points are then distributed
according to a clustering scenario, for example: ‘100 points per
μm², 50% of points in clusters, 10 points per cluster, and clustered
points are located up to 30 nm from a cluster center’. Ranges of
cluster descriptors in combination can therefore yield multi-
farious cluster scenarios. This method of cluster generation was
chosen for its simplicity and that it can generate a wide variety of
data sets containing well defined clusters for which the ground
truth of every point is known.

All simulated data sets were prepared for training by
determining the distances to the chosen number of nearest
neighbors (100 or 1000) for all points in all images. The sequence
of distances for all points were pooled and a mixture of input
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sequences representing both clustered and non-clustered points
were randomly selected and split into sets for training, validation,
and testing of new models. The classification labels matching the
selected points were similarly extracted and split into three sets.
For evaluation of data, the assigned scores and classification labels
(clustered, not clustered) for each data point were used to
segment the points into like-clusters (see Methods). In brief, each
clustered point was grouped into a cluster with its nearest
neighbor if that neighboring point was also labeled as clustered.
Consecutive neighbors were placed into this growing cluster until
the first neighboring non-clustered point was encountered.
Cluster shapes were created by centering a disc over each point
and taking the union of all shapes; the radius of the disk being
proportional to mean nearest-neighbor distance. The resulting
outline shape was eroded, proportional to the mean nearest-
neighbor distance to form the final cluster shape (see Supple-
mentary Methods and Supplementary Fig. 1).

Performance on simulated data. Simulated scenarios for training
all three models were compiled from combinations of different,
ranged, clustering parameters, specifically: an overall point den-
sity, a point population within each cluster, a proportion of the
points that are in clusters, and a maximum distance from the
cluster seed (effectively the ‘cluster radius’). The ranges of each
parameter used for training and performance testing are given in
Supplementary Note 1. Each clustering parameter combination
therefore describes a potential ‘clustering scenario’. All training
clustering scenario combinations were filtered to create a set of
711 ‘viable’ scenarios, which would yield 1–5 cluster(s) per μm²
and a point density inside clusters of between 1.5× and 100× that
of the non-clustered point density; point density inside of clusters
was determined by dividing the number of points per cluster by
the area per cluster. The point density outside was determined by
dividing the total number of non-clustered points by the non-
clustered area. The non-clustered area was calculated by sub-
tracting the total area covered by all the clusters from the total
area of the ‘cell’ into which points were distributed. Data sets with
clusters having density ratios below 1.5× that of the non-clustered
area were excluded because they are not readily distinguishable
from the non-clustered area or would form ‘holes’ devoid of
points (see Supplementary Table 1). These clustering scenarios
were specified based upon the clustering of membrane proteins
observed in T cells18–21. Clustering in the highest density sce-
narios is estimated from an expected upper limit of proteins in
the plasma membrane. For example, assuming a hydrodynamic
radius of 2–3 nm would result in a maximum packing density of
~50,000 proteins per μm². For larger globular proteins with a
hydrodynamic radius of 8 nm, the packing density decreases to
4000 per μm². At 25% occupancy of proteins in the membrane,
this gives a maximum upper bound in the region of 1000–12,000
proteins per μm². Therefore, our suite of cluster scenarios is
expected to include a realistic range of particle densities as well as
some more challenging scenarios with very high point densities.

Training data files were then used as input for the pre-
processing stage where the nearest-neighbor distances were
recorded. Model 07VEJJ was configured with 12 layers in Keras
and trained on 500,000 input samples comprising an even mix of
clustered and non-clustered labels; a different set of 100,000 input
samples were used for model validation during training. The
trained model was tested on another set of 100,000 input samples
with the same even mix of classification labels. This model
demonstrated an accuracy of 92.4% on both training and testing
data, with an F1 score (a measure of binary classification
accuracy) of 0.9243 for the testing data (precision 0.9245 and
recall 0.9243). Ten-fold cross validation of the model resulted in

an accuracy score of 91.8 ± 0.3%. Other models used in this study
achieved similar performance: Model 87B144 (12 layers using
1000 near neighbors) showed an accuracy of 94.0% on both
training and testing data with an F1 score of 0.9398 for the testing
data (precision 0.9420 and recall 0.9399). Model XPILJZ (four
layers using 100 near neighbors) showed an accuracy of 91.9% on
the training data and 92.0% on testing data with an F1 score of
0.9199 for the testing data (precision 0.9204 and recall 0.9199)
and was able to recover information about clusters comparable to
the cluster scenarios used to generate test samples (Fig. 2).

The model was then used to evaluate novel simulated data,
including images only containing spatially random (non-
clustered) points (Fig. 3a, d–g). These data featured a similar
range of clustering scenarios as that which was used to derive the
training, validation, and testing data sets as well as some scenarios
never experienced during training. Specifically, these novel
clustering scenarios covered 5, and 10–100 (in steps of 10)
percent points clustered, 5 and 10–100 (in steps of 10) nm
maximum distance from a cluster center. These parameters were
combined with fixed pairs of points per cluster and overall point
density parameters, namely 50 points per μm² and 10 points per
cluster, 100 points per μm² and 20 points per cluster, 300 points
per μm² and 100 points per cluster, and 500 points per μm² and
80 points per cluster. Model 07VEJJ showed > 90% accuracy in
scenarios without any clustering (only randomly distributed
points) where the overall point density was 100 points per μm² or
greater. For lower-density data the accuracy decreased to 89.2% in
images with 50 points per μm² and 84.5% for those with 10 points
per μm². In simulated data sets with clustering present, 07VEJJ
was able to correctly identify labels for over 90% of points in most
clustering scenarios (Fig. 3d, f). When presented with data outside
of the original training data clustering scenarios, for example,
clusters containing 100 points, the model was still able to perform
the correct classification in ~90% of the cases (Fig. 3e). A
qualitative assessment of performance was also performed on a
simulated data set containing clusters in lines and rings within a
highly variable background of non-clustered points (Supplemen-
tary Fig. 2) which demonstrates the models are capable of finding
clustered points from a variety of structures in addition to the
circular clusters on which the models were trained. Cluster
scenarios in which points were distributed within clusters
according to a Gaussian function were also tested. Models 07VEJJ
and 87B144 both returned accurate classification of points in
many scenarios with a decrease in performance on scenarios at
the extremes of the parameter ranges (Supplementary Fig. 3).
Interestingly 07VEJJ outperformed 87B144, even though it
accepts input from fewer neighbors. This could indicate over-
fitting of 87B144 to features found in the hard-edged clusters on
which it was trained. As our models accept input data from a
predefined number of nearby points, we also tested the effect of
exceeding this number. Cluster scenarios that presented clusters
containing 150 or 200 points per cluster were evaluated with
Model 07VEJJ (Supplementary Fig. 4). This model is limited to
receiving information from the 100 nearest neighbors when
deciding a point’s classification and expectedly showed decreased
classification performance on highly populated clusters, with
these clusters becoming fragmented or ignored.

The performance was compared with Getis & Franklin’s local
point pattern analysis (G&F LPPA), Bayesian cluster analysis
(Fig. 3a–c, g), DBSCAN (Supplementary Fig. 5), and SR-
Tesseler22 (Supplementary Figs. 6 and 7), which have also been
used for SMLM data analysis. Where possible, start-to-finish
timings to assess computational load were obtained for each
method (Supplementary Fig. 8). SR-Tesseler is an interactive
application and so any timings would be user-dependent.
However, once processing settings had been determined, this
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software could complete its analysis of an image within 1–5 min.
CAML was slower than DBSCAN for smaller data sets but
became as fast or faster when images approached half a million
points. All methods were faster than Bayesian analysis, most
likely owing to the exhaustive parameter scanning employed by
this method.

DBSCAN was quite sensitive to the value of the ‘epsilon’
parameter, which decides if nearby points are ‘neighbors’. Values
that worked well for some cluster scenarios were unsuitable for
others. In an experimental scenario, this would require careful
selection of processing settings for each image. Processing with
SR-Tesseler was very fast for the computational stages (seconds to
minutes) but also required significant user interaction to conduct
a full analysis. Selected clustering scenarios were processed with
SR-Tesseler and the clustering statistics were compared (Supple-
mentary Fig. 6). In general, CAML and SR-Tesseler returned
similar results for the size and point complement of clusters they
identified with CAML often returning a more homogenous set of
clusters with properties closer to the target values.

Models are configured with a set input size, which is the
number of near-neighbor values to use. Models are also trained
on simulated data that contain clusters that are a subset of all
possible ways that points may form clusters within a space. As
such, the size of a model’s input window and the maximum
number of points in a cluster seen during training may affect the
performance of a model. To test this, various models were created

with different input sizes (accepting 50, 100, or 200 near-neighbor
values) and then trained on data where clusters could contain up
this number of points. Trained models were then tested on data
with clusters that were outside of the model’s training experience.
As anticipated, models performed poorly when the size (in
points) of a cluster exceeded the model’s input window
(Supplementary Figs. 9 and 10). Furthermore, models that were
trained on small clusters could find points within much larger
clusters, provided they had a sufficiently large input window.

Our models utilize the nearest-neighbor distance as input. To
explore whether this approach was necessary, we also trained
models supplied with only normalized xy coordinate data. The
overall layer specification was maintained, however instead of a
one-dimensional input vector of Euclidean distances for a point’s
100 or 1000 nearest neighbors, a two-dimensional vector of the
neighboring points’ x and y coordinates (normalized and relative to
the origin point’s coordinates) was used. These models were able to
achieve similar performance (~94% accuracy) to those trained on
Euclidean distances but at the expense of considerably longer
training times; for 1000 neighbors the training time, when using
normalized coordinates as input, was ~15 days (excluding data
preparation time) compared with a few hours for models trained
using Euclidean distances (Supplementary Note 2). It is possible
that this time can be improved (as for any such training task)
through strategies such as early stopping to conclude training once
a pre-set performance target is reached. This alternative approach
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still required calculation of distance matrices to identify which
neighboring points’ coordinates to use for training but, as it was
neither faster nor more accurate than models trained on the
distance values, the Euclidean distance trained models were used
for the evaluation of experimental data. Computation times may be
further reduced by selecting and processing candidate points for
the training pool during the data simulation stage.

Demonstration on experimental data. C-terminal Src kinase
(Csk) is a protein tyrosine kinase and a well-established negative
regulator of T-cell receptor signaling through its inactivation of
membrane-associated Src kinases, including the TCR-associated
kinase Lck23. As a cytosolic protein, Csk is thought to be regulated
through its association with the transmembrane adapter protein
PAG (phosphoprotein associated with glycosphingolipid-enriched
microdomains). In non-activated T cells, PAG is predominantly
phosphorylated which facilitates Csk binding24,25. Upon TCR sti-
mulation PAG is dephosphorylated and releases Csk26,27. Once
dissociated from PAG, Csk is removed from the plasma membrane
through interactions with adaptor protein TRAF3 (TNF receptor-
associated factor 3) and PTNP22 (protein tyrosine phosphatase
N22)28, leading to a more-permissive environment for Src kinase
activation. Immune synapses were formed between primary
human T cells and an activating antibody-coated glass surface,
fixed, stained, and imaged by dSTORM microscopy in a TIRF
configuration. Machine learning based cluster analysis using Model
87B144 demonstrated changes in the clustering of Csk and PAG at
the plasma membrane (Fig. 4). These changes were dependent on

both the status of the T cells (naive or pre-stimulated) and their
activation status (non-activated or activated on anti-CD3+ ICAM-
1-coated glass).

Naive cells showed a change in Csk clustering (Supplementary
Figs. 11a–f and 12a–d) with activation through an increase in the
number of clusters from 4.85 clusters per μm² (median, IQR
3.15–7.38 clusters per μm²) to 8.80 clusters per μm² (median, IQR
6.75–10.75 clusters per μm²), P < 0.0001. Pre-stimulated cells after
activation showed an increase in the number of clusters from 6.77
clusters per μm² (median, IQR 5.13–8.37 clusters per μm²) to
14.37 clusters per μm² (median, IQR 11.03–18.57 clusters per
μm²), P < 0.0001. Naive cells also showed an increase in the
percentage of points clustering from 53.2% (median, IQR
48.3–59.7%) to 61.1% (median, IQR 53.1–64.4%) for the
stimulated condition, P < 0.0001 and in the number of points
per cluster from 9 (median, IQR 6–14) points per cluster to 11
(median, IQR 7–18) (P < 0.0001). The number of points per
cluster was also higher in pre-stimulated cells compared with
naive cells regardless of the activation condition of the cells (P <
0.0001 in either case). The area of Csk clusters in naive cells
decreased from 2322 (median, IQR 1310–4522) nm² to 2144
(median, IQR 1261–3770) nm² after stimulation (P < 0.0001).
This trend was exacerbated for pre-stimulated cells where clusters
shrank from 3093 (median, IQR 1632–6154) nm² to 1920
(median, IQR 1030–3655) nm² with stimulation (P < 0.0001).
Comparing between cell status, the pre-stimulated cells increased
their Csk cluster area compared with naive cells for non-
stimulatory conditions (P < 0.0001) but Csk clusters in pre-
stimulated cells became smaller upon stimulation (P < 0.0001).
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Fig. 3 Classification accuracy of simulated data. Data were assessed with a model 07VEJJ, or b Getis & Franklin’s Local Point Pattern Analysis, or
c Bayesian Cluster Analysis on 3 × 3 μm centered regions extracted from the data sets analyzed by a and b. Model 07VEJJ shows comparable performance
at very high point densities (d), when the number of points per cluster matches the limit of the models near-neighbor distances ‘reach’ (e) (n.d.= not
determined), and very low point densities (f). g Classification accuracy for completely spatially random data at different point densities analyzed by Model
07VEJJ or the Bayesian method; d.n.f.= did not finish. Data are mean values from ten replicates.
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PAG clustering (Supplementary Figs. 11g–l and 12e–h) in naive
cells did not change between activation conditions for the overall
density of clusters, with 10.19 clusters per μm² (median, IQR
5.03–16.07) clusters per μm²) in the non-activated condition and
13.89 clusters per μm² (median, IQR 7.07–21.32 per μm²) for the
antibody-activated condition, P= 0.3303. However, there was a
considerable decrease in the number of PAG clusters, in both non-
activated and activated conditions, for pre-stimulated cells
compared with naive cells (P= 0.0002 for non-activated cells and
P < 0.0001 for antibody-activated cells). Pre-stimulated cells also
showed a decrease in the number of points per cluster between the
non-stimulatory condition, with 14 (median IQR 7–32) points per
cluster compared with the stimulatory condition with 11 (median,
IQR 6–20) points per cluster (P < 0.0001). In comparing between
the two types of cells there were more points per cluster in pre-
stimulated cells than in naive for the non-activating conditions (P <
0.0001) but no difference for antigen-activated cells (P= 0.0763).
Comparing cluster areas between cell types, the pre-stimulated cells
had larger PAG clusters (19504 nm², IQR 8597–41690 nm² for non-
activated cells and 15669 nm², IQR 8054–30041 nm² for activated
cells) compared with naive cells (1551 nm², IQR 841–3159 nm²
for non-activated cells and 1359 nm², IQR 766–2522 nm² for
activated cells) for both non-stimulatory and stimulatory conditions
(P < 0.0001 for either case).

Extension of the model. As our method utilizes a simple one-
dimensional input array of distances, it would be expected to
work for 3D data. To test this, we generated simulated data with

similar clustering scenarios as for the 2D data. However, points
were also distributed within an additional axial dimension ran-
ging up to 500 nm (again to mimic the axial range encountered in
a typical 3D SMLM data set acquired using an astigmatic lens29)
and clusters were spherical instead of disc shaped. A new model
was configured using the same four-layer arrangement as Model
XPILJZ (an input layer, two fully connected layers, and an output
layer) and set to accept 1000 near neighbor distances. A training
data set was prepared as for the other models, except distances
were measured in three dimensions. The trained model ‘GAXJPR’
returned 97.5% accuracy on the testing data set. This model was
then used to assess an experimental PALM data set of the T-cell
signaling adapter protein LAT fused to mEos3.2 (Supplementary
Fig. 13) where it was able to locate clusters of LAT both in the
plasma membrane and membrane-proximal vesicles. Although
the model was trained on spherical clusters it was still able to
identify the elongated clusters that result from the lower axial
resolution of astigmatic-based 3D localization imaging.

We also explored the potential of our system to accommodate
multiple labels. The models described so far produce a binary
label indicating if a point is clustered, with non-clustered points
as default. We generated new training data in which points were
distributed in either circular clusters, as before, or long
filamentous structures. In these data, points therefore had one
of three known labels: not clustered, clustered (round), or
clustered (fiber). We then trained a model ‘3TXKFS’ (comprising
an input layer for data from 1000 neighbors, a fully connected
layer, and an output layer to produce a score for each of the three
expected labels). Evaluation of novel simulated data confirmed
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Fig. 4 Analysis of dSTORM data with Model 87B144. Activated primary human T cells stained for Csk showing either localized points (a), or resulting
cluster outlines (b), of two regions (blue, peripheral, and magenta, central). Clustering data obtained from individual naive or pre-stimulated cells for Csk
(c) or PAG (d) staining in either non-activating (supported on glass) or activating (anti-CD3+ ICAM-1) conditions. Data are from three independent
experiments and are presented as median values from each cell; Csk, naive—glass: 85 cells, Csk, naive—CD3+ ICAM-1: 71 cells, Csk, Pre-stimulated—
glass: 30 cells, Csk, pre-stimulated—CD3+ ICAM-1: 19 cells, PAG, naive—glass: 53 cells, PAG, naive—CD3+ ICAM-1: 65 cells, PAG, Pre-stimulated—
glass: 14 cells, PAG, pre-stimulated—CD3+ ICAM-1: 18 cells.
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this model was able to identify circular clusters and fibers with
reasonably high accuracy and still performed well when used with
experimental data (Supplementary Fig. 14).

Discussion
In this study, we used neural networks to classify points from
SMLM data sets as either clustered or non-clustered, based on a
sequence of values derived from each point’s nearest-neighbor
distances. The network can identify features within such a
sequence that allow it to classify points with a high degree of
confidence. We have also shown how data sets that have been
annotated by our model can then be further processed to use the
new information on a point’s clustering status to partition points
into separate clusters. This process can be performed on the
entire available data set, without needing to reduce the data or
acquire expensive computational resources. These per-cluster
data allow for a deeper interrogation of the clustering patterns
within the original image compared with global reporters of
clustering, such as Ripley’s K Function. This is of relevance to
data from biological specimens that, without reduction of the
original data to small regions-of interest, is rarely homogenous in
its overall distribution of either points or clusters.

With our approach, we observed changes in Csk and PAG
clustering in naive and previously stimulated T cells. We saw a
marked decrease in the number of PAG clusters for previously
activated T cells. The inhibitory function of PAG is not observed
in naive T cells, which can be attributed to a more prominent role
for Cbl ubiquitin ligase proteins in regulating TCR activation in
these cells30. Our observations may indicate a change in effec-
tiveness of PAG in capturing Csk at the plasma membrane for Src
kinase inhibition after T cells have been exposed to antigen. For
example, in naive cells, Csk may have limited PAG-mediated
access to the plasma membrane, if PAG were sequestered into
clusters or if there was greater competition with other PAG-
binding proteins. The overall Csk cluster presentation between
naive and pre-stimulated T cells was relatively similar. However,
there were detectable changes between non-activated and
antibody-activated cells, with Csk clusters having an increased
number of points after stimulation accompanied by a very slight
decrease in area. This increase in the density of Csk within clusters
might reflect the displacement of Csk from its inhibitory, plasma
membrane adjacent clusters, to more cytosolic clusters formed
with disinhibitory binding partners, such as TRAF3 and PTPN22.

Our approach has several benefits. It is fast, requires minimal
parameter input and minimal user interaction compared with
other methods. The only analysis parameter that bears any major
consequences on the output (and on execution time) is the
number of nearest neighbors from which distances are measured.
This decision is easily informed from a cursory examination of
the input data, for example, by rendering a representative image,
identifying a number of candidate clustered structures, and
counting the points within them; this can be achieved using the
‘restrict to ROI’ feature in ThunderSTORM. A model should then
be used whose input window (the number of neighbors seen by
the model) is greater than the number of points in the target
clustered structures and we have also shown that an over-
estimation of input size of the model does not have a detrimental
effect on the outcome. Underestimation of the input size results
in the exclusion of clusters containing more points than the
model can ‘see’; for samples containing fiducial registration beads
(for drift and aberration correction or channel alignment) this
could be employed to remove beads, which often present as very
large and densely populated clusters within the reconstructed
image. Although our models were trained on very simplistic
circular clusters, they were also successful at identifying clustered

points a wide variety of non-circular structures. Although there is
some latitude for our models to identify exotic clusters, it may be
pertinent to specify and train new models on data, which have
been simulated to more closely match the type of clusters that are
expected in the experimental data. For example, our models are
not appropriate to recover clusters containing more points than
the models were trained to check. In these cases, for example, a
cluster with 200 points will be treated by model 07VEJJ (which
only uses 100 nearest-neighbor distances) as a conglomerate of
smaller clusters, depending on the internal distribution of points
within the larger cluster. Our models were trained on data that
included an uneven ‘cell’ boundary with sharp contrast in the
number of points inside and outside of the ‘cell’ area however
points from these areas were not deliberately selected for when
building the training set. Data evaluated with our models some-
times shows aberrant clustering within membrane protrusions,
but these register as very large and sparsely populated clusters
and would be easy to filter out, if desired.

CAML does not make any assumptions about, or corrections
for, fluorophore re-blinking. Most SMLM reconstruction software
has this function available as part of the image reconstruction
post-processing routines and we do not seek to impose any spe-
cific blinking correction method upon the user. Other sources of
SMLM image artifacts such sample drift, chromatic aberration,
imperfect or overlapped point-spread functions, and suboptimal
labeling and reporter densities are also assumed to be either absent
during image reconstruction or have been accommodated as
within acceptable tolerances. Our method also does not consider
the points’ localization precision as this is a variable that is also
dependent on the individual’s acquisition and analysis environ-
ment; localization precision is dependent on the camera settings
(for conversion of intensity values to photon counts) and on the
image reconstruction software, which may employ any of a
number of different methods to calculate localization precision
values. Furthermore, the localization precision is generally much
smaller than the size of the structures being detected; in many
cases, localization uncertainty values are routinely reported to be
below 10 nm. For methods which do incorporate the localization
precision, such as Bayesian cluster analysis, removing this para-
meter (e.g., by giving all points the same value) does not greatly
alter the outcome. However, as our system is easily modifiable, it is
possible for a user to include a generator of localization uncer-
tainty when simulating new training data and to incorporate this
information as an additional feature during model training.

There are few existing methods that apply deep learning to
point pattern data sets and none which are specifically designed
for SMLM data. PointNet31 is a supervised neural network
architecture, which can classify and segment point-cloud data
sets. In PointNet, the network is trained on samples with uniform
densities, whereas SMLM data present a very wide range of
densities. There are also fundamental differences between data
from point clouds and SMLM systems: point clouds describe the
external surfaces of objects and points between and within those
objects are minimal and often removed by pre-filtering the data.
In SMLM data, there are very often many points between (and
within) clusters. In some cases, these non-clustered points may
comprise most of the data. PointNet has been modified for
detection of specific structures, such as caveolae, in SMLM data32.
However, this required specialized knowledge or high-
performance computing facility, whereas CAML can process an
entire image without requiring tiling or reduction into small
regions-of-interest. A recent theoretical approach to clustering
point pattern data is ‘dominant sets’, which uses pairwise clus-
tering and graph theory to group self-similar points into clus-
ters33. This method has been adapted to analyze localization
microscopy data of proteins in neuronal synapses34; however, it
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requires empirical estimation of analysis parameters and com-
putational requirements may limit the number of points that can
be assessed.

Although the models described here were trained on simulated
clusters with hard-edges and circular shapes, they are nevertheless
able to find clusters of abstract and arbitrary shapes, including
highly elongated clusters. Our models’ assessment of clustering is
also not affected by discontinuities in the distribution of points or
the type of clustering within the field of view. However, it is
important to recognize that bias is inherent in any simulated data
set and models trained on such data may not always be appro-
priate to apply to other types of data. The method as described
here is flexible enough to allow an end user to quickly assemble a
new model with training data generated to match a particular
type of clustering outcome, whereas also allowing rapid re-use of
trained models to classify and annotate data for the quantification
of clustering in ‘real’ data.

Future directions include incorporating more features from the
input data, such as relative angles to near neighbors or including
the localization precision of nearby points, in order to more
robustly determine the extent of local point clustering. This will
certainly require more sophisticated training data, which are
simulated to incorporate these additional features. This infor-
mation might also be obtained without using simulated data,
through manually annotated biological data in which structures
of a specific nature were selected. This could be used to train a
model to identify those structures in novel data and would also
allow the incorporation of features such as localization uncer-
tainty and photon count in their natural context. It may also be
possible to use input data other than Euclidean near-neighbor
distances. Further improvements could be made if the model
were to return output indicating not just if a point originated
from a cluster but also which of the nearby points were likely to
come from the same cluster. There is also the potential to expand
the method into multidimensional data, such as dynamic clus-
tering in live data, or co-clustering between points from different
imaging channels.

CAML is deliberately split into discrete processing stages for
easier user interaction with each stage but also to allow for
intervention between these stages. If a user requires only the
model-labeled points, then the processing can be stopped after
model assessment. Alternatively, a user may wish to apply a
different segmentation method to the labeled data or may want to
re-use data prepared by the first step (the most time-consuming
stage) with several different models. Each of the data analysis
stages of CAML is designed for batch-processing which enables
many images to be processed in an unattended fashion, a feature
that is absent from some other analysis methods, so it is feasible
to automate the output of one stage as input to the next. Another
interesting future direction would be to develop the method using
unsupervised learning, which would have the advantage of find-
ing clustered structures without being limited or biased towards
those given in training data for supervised learning.

The software presented here describes a complementary
approach to the existing methods for the cluster analysis of
SMLM data. It is presented to be easily accessible to non-
experienced users while providing flexibility to enable different
and highly customized configurations if required.

Methods
Cell isolation and staining. Peripheral blood was acquired from healthy human
donors under ethics license HR-15/16-1978 (King’s College London). Written
informed consent was provided by each donor. Primary human T cells were iso-
lated from human blood using a pan T-cell selection kit (130-096-535, Miltenyi
Biotec). T cells were isolated from human blood and then used directly for imaging
assays as “naive” cells. Antigen pre-stimulated T blasts (’pre-stimulated’ cells) were
generated in parallel by incubating freshly isolated (naive) T cells with 2 μg per ml

anti-CD3 mAb (eBioscience clone OKT3, 16-0037-81) and 5 μg per ml anti-CD28
mAb (RnD Systems, clone CD28.2, 16-0289-85) coated flasks at 50,000 cells per
cm² in complete medium (RPMI with 10% fetal bovine serum, L-glutamine, and
penicillin/streptomycin) for 2 days. Cells were then washed and cultured in
complete medium for an additional 5 days in the presence of 20 ng per mL IL-2
(Proleukin). Purity was then assessed by flow cytometry.

Glass-bottomed chamber slides (#1.5 glass, ibidi μSlides) were coated with a
mixture of 3 μg per ml recombinant human ICAM-1-Fc (RnD Systems) and 2 μg
per ml anti-CD3 mAb overnight at 4 °C. Cells were added to wells at a density of
25,000 cells per cm² for 4 min then gently rinsed with warm (equilibrated to 37 °C)
Hanks' Balanced Salt Solution to remove non-adhered cells then fixed. Fixation was
by the pH-shift method35 at room temperature: cells were first incubated for 5 min
in pH 6.8 fixation buffer (3% (w/v) para-formaldehyde (PFA), 80 mM PIPES, 2 mM

MgCl2, 5 mM EGTA, in water) followed by 10 min in pH 11 Fixation Buffer (3%
(w/v) PFA, 100 mM Borax, in water). Fixed cells were washed three times with PBS,
permeabilized with Triton X-100 (0.1% in PBS) for 5 min at 4 °C and rinsed again.
Auto-fluorescence was quenched by incubating the sample in NaBH4 (1 mg per ml
in water) for 15 min followed by rinsing three times with PBS. The fixed, quenched
samples were blocked with 5% (w/v) BSA/PBS for an hour. The sample was then
incubated with primary antibody, either rabbit polyclonal anti-Csk (Santa Cruz sc-
286) at 1:300 or rabbit polyclonal anti-PAG (Abcam ab14989) at 1:500 overnight at
4 °C and washed three times for 5 min with PBS. The sample was then incubated
with secondary anti-rabbit antibody labeled with Alexa Fluor 647 (ThermoFisher
Scientific A-21246) at 1:200 for 1 h at room temperature followed by three 5-
minute PBS washes. The sample was then used immediately for dSTORM imaging.

For the non-stimulatory condition (referred to as ‘glass’), cells were fixed,
washed, and stained as a single-cell suspension. Fixed, stained cells were settled
onto untreated glass chamber slides prior to imaging.

dSTORM imaging. Fixed and stained samples were prepared for imaging by
replacing the final PBS wash with a volume of STORM imaging buffer (50 mM Tris-
HCI (pH 8.0), 10 mM NaCl, 0.56 M glucose, 0.8 mg per ml glucose oxidase (Sigma
G2133), 42.5 μg per ml bovine catalase (Sigma C40), 10 mM cysteamine (Sigma
30070). The dSTORM image sequences were acquired on a Nikon N-STORM
system in a TIRF configuration using a 100 × 1.49 NA CFI Apochromat TIRF
objective for a pixel size of 160 nm. Samples were illuminated with 647 nm laser
light at ~2.05 kW per cm²; no 405 nm laser light was used during imaging. Images
were recorded on an Andor IXON Ultra 897 EMCCD using a centered 256 × 256
pixel region at 20 ms per frame for 30,000 frames and an electron multiplier gain of
200 and pre-amplifier gain profile 3.

dSTORM image reconstruction. The dSTORM imaging data were processed
using ThunderSTORM36 and the following parameters: pre-detection wavelet filter
(B-spline, scale 2, order 3), initial detection by non-maximum suppression (radius
1, threshold at one standard deviation of the F1 wavelet), and sub-pixel localization
by integrated Gaussian point-spread function and maximum likelihood estimator
with a fitting radius of the pixels. Detected points were then filtered and retained
according to the following criteria: an intensity range of 500–5000 photons, a sigma
range of 50–250, and a localization uncertainty of < 25 nm. The filtered data set was
then corrected for sample drift using cross-correlation of images from five bins at a
magnification of 5. The occurrence of repeated localizations, such as can occur
from long dye on times or fast re-blinking, was reduced by merging points, which
reappeared within 50 nm and 25 frames of the initial detection. For the purposes of
interpretation, it is assumed that the frequency of multiple detection of dye
molecules is independent of the sample staining and therefore the relative changes
in the clustering of points between sample conditions are independent of dye re-
blinking.

Statistical analyses. For statistical comparisons, all data were analyzed using non-
parametric Kruskal–Wallis and Dunn’s multiple comparison tests in GraphPad
Prism software. A significant difference between conditions was considered as
P < 0.05 for rejecting the null hypothesis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Simulated data (used for model training and performance evaluation) are available from
the Open Science Foundation at https://osf.io/xa4zj/.

Code availability
The Python scripts and trained models that are described here, as well as a user guide, are
available online at https://gitlab.com/quokka79/caml.
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