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Abstract:
Track inspection is dedicated to detecting track geometry-related
potential defects which require several visits to accomplish the ob-
jective due to uncertainties in a track deterioration model. Through
updating belief about prior specifications of the model parameters
using freshly available track inspection data, the current inspec-
tion design would gain an improvement in terms of the value of
investment (not necessary concerning cost reduction) for next main-
tenance cycles. In the sense of maximising an opportunity of having
uncertainty reduction, this study proposes a statistical-based method
blending with information theory to assign a priority index to a
discrete-time point (called a candidate) in a given time interval.
High priority is, in general, dedicated for a candidate that expect-
edly offer large cut in uncertainties i.e. high informativeness time
for inspection. To lowering a false positive rate in the index assign-
ment bearings and size of the ratio of adjustment are sequentially
analysed before the final ranking gets to publish. Analysis of the
simulation results corresponds to various settings of linear geome-
try deterioration model establishes correlations between covariance
and priority index convincingly. Also, the relationship between the
time gap between consecutive inspections and a prior deterioration
rate is found significant in this context. A detailed description of the
proposed model development is presented in this paper.

Keywords: Uncertainty propagation, Entropy, Track quality index,
Rail track inspection, Risk analysis

1.Introduction
Condition of rail track deteriorates progressively over its ser-
vice time that means there are always detectable symptoms
or warning signs before the state of failure [1]. By inspecting
the geometry condition of the track followed with a main-
tenance decision process, appropriate maintenance work can
be assigned to the inspected track. In practice, the severity
of track geometry condition is evaluated to define a mainte-
nance scheme; either intermediate action limit, intervention
limit or alert limit [2].
Realising that inspections are discrete events, it is vital to
capture track irregularities and track defects before the track
geometry condition passes maintenance limits to effectively
maintain a track (i.e., avoid track failure which incurs higher
maintenance costs) [3]. A common approach to reducing the
likelihood of suffering late defect detection that positively
correlates with unplanned maintenance tasks is performing

periodic in-spections. Recent trends show that a periodic
track inspection design problem is formulated and solved as a
constrained optimisation problem subject to direct costs, risk,
reliability and/or safety standard [4].

Under the batch-mode optimisation methodology in which
epistemic uncertainty is presented in the model formulation,
a track manager has no an opportunity/access point to accu-
rately evaluate the effects of the new observation(s) towards
the effectiveness of the final inspection. This situation makes
sense because an exact time when the geometric condition
of the inspected track will pass a maintenance limit is uncer-
tain. Hence, track supervisors or planners predict their em-
pirically designed track deterioration model to try their best
to deliver an inspection at an adequate time. A key benefit
of such deterioration models is the deposit of a significant
reduction in the number of (predictable) inspections, which
leads to cost-effectiveness in maintaining railway infrastruc-
tures [5, 6]. Despite this, the deterioration model itself holds
some degree of uncertainty about its parameter(s), but this
drawback could be managed in many ways [7]. To illustrate,
see Figure 1.

Let w be an estimated inspection time, which is believed to
be near (or exactly) the time of crossing the limit, w∗. At
time w, a calculated condition index of a targeted track, y,
is presumed to be near the limit, y∗ by a decision error of e;
e = y− y∗ . A positive error indicates that a track does not
require maintenance yet is associated with the limit. How-
ever, a large positive error indicates that the final inspection
(we use the term final to distinguish it from periodic inspec-
tions, which occur beforew) is underestimated and leaves the
planner with uncertainty about the index during the period
(w,w∗). Alternatively, the planner could miss the opportu-
nity to detect y∗ before its occurrence. Thus, it is not surpris-
ing when a recent survey shows that up to 85% of inspections
end with no failure detection results [8].

The high percentage of the so-called supplementary inspec-
tions before the final inspection (before maintenance works)
gives an insight of re-evaluating the planned inspection work
in order to update prior belief about the rate of track de-
terioration using unobserved quantities (track measurement
and inspection data). In this sense, a benefit in terms of the
value of in-formation from the existing quantities first needs a



quantification which later being used to prioritise them based
on the selected measure(s). A decision to replace and/or to
persist any part of an inspection plan would use this priority
index as an input.
In our earlier works [9, 10], we define this situation as a posi-
tive disruption. Hypothetically, one or two planned additional
inspection(s) might be avoided depending on the amount
of infor-mation gathered by the latest inspection. Gener-
ally, railway infrastructure companies could save hundreds
of thousands of dollars in their maintenance budgets if a sin-
gle inspection is taken out of the plan for each track segment
[11].
This study proposes a method to quantify the effect of a single
supplementary inspection result on the estimation risk level
of choosing time w to perform a final track inspection. The
method integrates the benefits of Bayesian inferences and the
entropy concept, and importantly, it works in a binary mode
and requires only one input. For this, the Bayesian approach
provides a theoretical inference framework for updating prior
beliefs about uncertain quantities once additional information
becomes available (if the decision-maker can make observa-
tions) from the tests and analyses conducted during the de-
velopment program [11]. The computation of entropy char-
acterises the value of inspection decision hence establishing
that any inspection investment should reflect the effort of un-
certainty reduction [12].

2.Uncertainty propagation: Rule
When a track manager decides to assign the final inspection
at w, the manager understands that there is risk relating to
a decision error x, which can be defined as the difference
between y and y∗. In x lies outside an acceptable error tol-
erance, ~ε = [εi, εh], a penalty cost cp is imposed. Some may
view the cost as an average of underestimation an overesti-
mation costs.
For any t in the monitoring cycle, to ≤ t ≤ w, the expected
value of cp, E(cp) can be defined as:

E(cp) = cp× (1−p(εl ≤ x≤ εh, t)) (1)

where p(x) is a probability density function of the random
variable x. Intuitively, we can adopt Eq. (1) as a risk volume
of trusting/adopting p(x) deciding to deliver an inspection
at time w. A proportional relationship between Riskt and
E(cp) is given as follows:

Riskt=w ∝ E(cp, t= w)
∝ cp× (1−p(εl ≤ x≤ εh, t)) (2)

Optimistically, we maintain the risk volume (i.e. Riskt=to ≈
Riskt=w) along the monitoring cycle, while seeking oppor-
tunities to reduce the initial volume, which should be system-
atically performed. Consider cp is fixed for any selection of
function p(x) and is applicable along the monitoring cycle, a
desired risk volume Riskt=w might face an alteration in the
presence of of changing values of parameters of p(x). The
changes can be observed at time w upon completion of the

inspection, but risk mitigation might be ineffective in a tight
time interval between w and w∗. Fortunately, n supplemen-
tary inspection(s), G = {g1,g2, . . . ,gn} can be arranged and
performed on the inspected track prior to w, and in turn, their
results might be informative to detect early changes in the
shape and position of p(x) early. Eq. (2) is redefined as:

Riskt=w ∝ cp× (1−p(εl ≤ x≤ εh, t|G)) (3)

To investigate whether dependencies between a random vari-
able x and G exists, a measure of the entropy of x and the
entropy of x|G is compared.

∆Ent= Ent(x)−Ent(x|G)

=
∫
R
p(x) lnp(x)dx+

∫∫
R×R

p(x|G) lnp(x|G)dxdG

(4)

Variables x and G are independent if ∆Ent is zero, which
means that the information of G is meaningless in estimating
x. In the same vein, a reduction in an amount of uncertainty
(randomness) in p(x) cannot be gained using the conditional
probability distribution, p(x|G). In the case of Ent(x|G) 6=
Ent(x),it is worthwhile to assess summative components of
Ent(x|G) which are formulated in the following equation:

Ent(x|G) = Ent(x,G)−Ent(G) (5)

where Ent(x,G) represents the joint entropy of x and G. In-
tuitively, we assign a weak assumption, which states that only
the last element of the right-hand side of Eq. (5) will be af-
fected with an introduction of new observations to the sample
space G. At this point, we could manipulate an information
regarding level of deviation in Ent(G) to establish a simple
rule to detect unacceptable changes in prior Ent(x|G) upon
completion of a single periodic inspection.
The following subsection explains a method to identify which
parameter(s) in p(G) should be controlled to allow the track
manager to smartly monitor the Riskt=w along the monitor-
ing cycle. Further, a justification to either terminate, skip, or
reschedule a remaining part of the supplementary inspections
can be reached depending on the amount of fluctuation of risk
volume in each completed inspection.

2.1. Parameter of Interest
Suppose G is a continuous random variable in R which is
independent identically distrubuted (i.i.d) over the mean (i.e.
G ∼N(µG,σG)). Over R, a maximum entropy of G can be
determined by solving the following equation:

{Entmax(G) =−
∫
R

1√
2πσ

e−(1/2)((G−µ)/σ)2

(
− log(

√
2πσ)− 1

2

(
G−µ
σ

)2
)
dG

= 1
2(1 + log(2πσ2))≤ log(n)}

(6)



Figure 1. A region of an under-over estimation risk subject to a final track inspection time

where n is the sample size. From Eq. (6), it is obvious that
the change in the amount of entropy carried out by G can
be monitored directly from its variance. The calculation is
no longer straightforward in the event of unknown variance,
regardless of what the status of the mean is. To estimate σ2

considering n data observations {g1,g2, ...,gn} we adopt a
Bayes′ theorem which provides us the following relationship:

p(θ|{g1,g2, ...,gn})∝ po(θ)×p({g1,g2, ...,gn}|µ,θ) (7)

where a model precision θ is an inverse proportional of
σ2. For prior density function, po(θ), a flexible choice is
a gamma distribution, θ ∼ G(αo,βo). Thus, a conditional
likehood function of θ in Eq. (7) is also in terms of gamma
parameters and is equated as follows:

{p(θ|{g1,g2, ...,gn})∝
(
θαo−1exp(−θβ)

)
(
θn/2exp(−θ/2

n∑
i=1

(gi−µ)2)
∝ θ(α+n/2)−1exp(−θ(βo+

1/2
n∑
i=1

(gi−µ)2))

∝ θαnexp(θβn)}

(8)

Further, we can apply a proportion of its expected value
E(θ|{g1,g2, ...,gn}) = αnβn into Eq. (6) for entropy calcu-
lation. Following this, an effect of new observation, gn+1
on the initial amount of Ent(G) could be quantified from a

difference betweenEnt(G|θn+1) andEnt(G|θn), where the
corresponding formula as follows:

∆(Ent(G|θn+1),Ent(G|θn)) = 1
2 log( αnβn

αn+1βn+1
). (9)

Interestingly, the associated plot of Eq. (9) in Figure 2 indi-
cates that there will be no entropy increment αnβn

αn+1βn+1
≤ 1.

Application of elements in the second line of Eq. (8) to the
fraction component of Eq. (9) exhibits a boundary condition
between gn+1 and the ratio of βn to αn as illustrated in Fig-
ure 3 . Important steps in the formulation of the boundary
condition are presented below:

αnβn ≤ αn+1βn+1
αn
αn+1

≤ βn+ 0.5(gn+1−µ)2

(gn+1−µ)2 ≤ βn
αn+ 0.5 <

βn
αn

(gn+1−µ)2 ≤ βn
αn

(10)

For a given µ, ∆(Ent(G|θn+1),Ent(G|θn)) has positive
values if gn+1 lies in the shaded region. Importanty, infor-
mation of gamma parameters is not necessarily required at
this stage.

3.Indicators
With respect to the track geometry condition index, the ver-
tical scale in Figure 3 will have a limited range of val-



Figure 2. A cutting point between a safe and alert effect of a new observation to G

Figure 3. Boundary regions for track geometry condition index checking

ues. The minimum and maximum possible value of the se-
lected index can be assigned as a lower and upper limit to
the scale, respectively. By doing that, as illustrated with a
dashed horizontal line below and above µ, we have estab-
lished a separation point on the horizontal axis, cx. For a
given {g1,g2, . . . ,gn} with bn/an > cx, an additional geo-
metric index reading brings no meaning to the prior entropy
G. In this situation, the railway management team will waste
their resources and lose profit for a valueless supplementary
inspection. Conversely, the track manager can trace the sep-
aration line first, which automatically points out the location
of both limits.

Figure 3 can be treated as a 0/1 decision map to determine
whether Ent(G) faces a change in value or not after a new

inspection result is considered in the corresponding proba-
bility density function. In the former case, a calculation
of conditional entropy x|G in Eq. (5) required to quantify
how a risk volume deviates from its initial value. To achieve
that, Ent(x,G) with an updated variance must be computed,
which presumably requires extra computational effort. Es-
tablishment of decision rule(s) as done for Ent(G) might ac-
celerate the process.

In the event of G has non-Gaussian density function, the re-
lationships in the Equations (8) to (10) might not be directly
applicable. The statement is made due to the findings in [13],
which point out the effects of the non-Gaussian prior on the
observation value. Thus, redoing Section 2.1 will be our next
agenda, aiming to identify a decision rule or boundary con-



dition similar to that in Figure 3, specifically from a Poisson
and exponential density function.
Apart from that, this study is keen to validate the proposed
method with real data. A comparison analysis using differ-
ent configurations of the dataset, such as track category, ge-
ographical properties, and environmental threats, might es-
tablish a set of separation points corresponding to perfect or
imperfect data.
Lastly, this study generally assigns G to a single supplemen-
tary inspection without specifying the time duration from w.
A decision to increase the time duration might causeG andX
turns to be independent events. Consequently, the proposed
method is invalid, which means that the next supplementary
inspection in the schedule is mandatory. Despite the time-
related issue, a proposal of considering multiple locations for
G is an interesting direction to discover. An expansion of
entropy equality and Bayes′ theorem can be expected when
more than one inspection result is considered.

4.Conclusions
This study proposes an entropy-based method to determine
changes in risk volume associated with a final track geometry
inspection. The volume, which is a function of conditional
probability of decision error, is unchanged during its mon-
itoring cycle unless a supplementary inspection manifests
it through a simple 2D-coordinate mapping (bn/an,gn+1)
mapping. A ratio of scale to shape parameter, both from
the gamma distribution, and the latest track condition read-
ing gained from a supplementary inspection represent the
x− and y− coordinates, respectively. The prescribed risk
volume is unaffected along a period of (w,w∗) for any co-
ordinates that lie on the non-shaded regions in Figure 3 .
In this situation, several suggestions can be made, such as
rescheduling and/or removing the remaining supplementary
inspections scheduled between (w,w∗). A cost-benefit ratio
of the track geometry inspection programme can be reduced
under a controlled and safe environment.
Generalising the proposed model to cope with variability in a
configuration of random variable G will be the main agenda
to forward this research. Upon completion of the model gen-
eralisation, effects of rescheduling and or removal can be
Acknowledgment
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studied and analysed thoroughly where a system approach
will be integrated. The whole package is expected to be vali-
dated using real track inspection data.
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