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Binary black holes in which both spins are aligned with the binary’s orbital angular momentum do not
precess. However, the up-down configuration, in which the spin of the heavier (lighter) black hole is
aligned (anti-aligned) with the orbital angular momentum, is unstable to spin precession at small orbital
separations [D. Gerosa et al., Phys. Rev. Lett. 115, 141102 (2015)]. We first cast the spin precession
problem in terms of a simple harmonic oscillator and provide a cleaner derivation of the instability onset.
Surprisingly, we find that following the instability, up-down binaries do not disperse in the available
parameter space but evolve toward precise endpoints. We then present an analytic scheme to locate these
final configurations and confirm them with numerical integrations. Namely, unstable up-down binaries
approach mergers with the two spins coaligned with each other and equally misaligned with the orbital
angular momentum. Merging up-down binaries relevant to LIGO/Virgo and LISA may be detected in these
endpoint configurations if the instability onset occurs prior to the sensitivity threshold of the detector. As a
by-product, we obtain new generic results on binary black hole spin-orbit resonances at 2nd post-
Newtonian order. We finally apply these findings to a simple astrophysical population of binary black holes
where a formation mechanism aligns the spins without preference for co- or counteralignment, as might be
the case for stellar-mass black holes embedded in the accretion disk of a supermassive black hole.

DOI: 10.1103/PhysRevD.101.124037

I. INTRODUCTION

Stellar-mass black hole (BH) binaries are now regularly
detected by the gravitational-wave (GW) detectors LIGO
and Virgo [1]. LISA will soon observe supermassive BH
binaries which populate the low-frequency GW sky [2].
These detections provide the opportunity to study BHs as
never before, allowing for the confrontation of theory with
observation. The evolution of binary BHs generalizes the
Newtonian two-body problem to Einstein’s theory of gen-
eral relativity. Though no exact solution is known, several
approximate methods have been developed to tackle this
problem, including the post-Newtonian (PN) [3], effective-
one-body [4], and gravitational self-force [5] formalisms, as
well as numerical relativity [6].
The simplest system one can address is that of two

nonspinning BHs. Beyond this is the case in which the
holes have spins aligned with the orbital angular momen-
tum of the binary. These configurations are unique among
spinning BH binaries in that such a system does not
precess: the orbital plane maintains a fixed orientation
and their gravitational emission is comparatively easy to
model. For generic sources in which the BH spins are
misaligned, the orbital angular momentum and both BH

spins all precess about the total angular momentum. The
resulting relativistic spin-orbit and spin-spin couplings [7]
give rise to a very rich precessional dynamics, leading to
modulations in the emitted gravitational waveform [8,9].
Accurate modeling of spin precession is crucial to interpret
current and future GW events [10–13]
Spins are clean astrophysical observables. For stellar-

mass BHs observed by LIGO/Virgo, they are a powerful
tools to discriminate between isolated and dynamically
assembled binaries [14–18]. BH spins encode information
on some essential physics of massive stars including, but
not limited to, core-envelope interactions, tides, mass
transfer, supernova kicks, magnetic torquing, and internal
gravity waves [19–29]. For binaries embedded in gaseous
environments such as the disks of active galactic nuclei
(AGN) [30,31], spin misalignments might allow us to
constrain the occurrence of relativistic viscous interactions
[32]. This is also the case for supermassive BH binaries that
populate the LISA band, where prominent phases of disk
accretion might crucially impact the spin orientations at
merger [33–37].
There are four distinct configurations in which the BH

spins are aligned to the orbital angular momentum (see
Fig. 1). We dub each of these cases “up-up,” “down-down,”
“down-up,” and “up-down,” where “up” (“down”) refers to
co- (counter-) alignment with the orbital angular momen-
tum and the label before (after) the hyphen refers to the spin
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alignment of the primary (secondary) BH. It is straightfor-
ward to show that all four of these configurations are
equilibrium, nonprecessing solutions of the relativistic
spin-precession equations [7]: a BH binary initialized in
exactly one of these configurations remains so over its
inspiral. Here, we tackle their stability: if an arbitrarily
small misalignment is present, how do such configurations
behave?
Employing the parametrization of generic spin preces-

sion in terms of an effective potential at 2PN order [38,39],
Gerosa et al. [40] investigated the robustness of aligned
spin binary BH configurations (see also Ref. [41] for a
subsequent study). They found that the up-up, down-down,
and down-up configurations are stable, remaining approx-
imately aligned under a small perturbation of the spin
directions. This is not the case for up-down binaries, i.e.,
those where the heavier BH is aligned with the orbital
angular momentum while the lighter BH is antialigned.
They report the presence of a critical orbital separation

rudþ ¼ ð ffiffiffiffiffi
χ1

p þ ffiffiffiffiffiffiffi
qχ2

p Þ4
ð1 − qÞ2 M ð1Þ

which defines the onset of the instability (here q < 1 is
the binary mass ratio, M is the total mass, χ1 and χ2 are
the Kerr parameters of the more and less massive BH,
respectively, and we use geometrical units G ¼ c ¼ 1). An
up-down binary that is formed at large orbital separations
r > rudþ will at first inspiral much as the other stable
aligned binaries do, with the spins remaining arbitrarily
close to the aligned configuration. However, upon reach-
ing the instability onset at r ¼ rudþ, the binary becomes
unstable to spin precession, leading to large misalignments
of the spins.
Figure 2 shows the evolution of the spins for a binary BH

in the up-down configuration. The binary is evolved from
an orbital separation of r ¼ 1000M > rudþ to r ¼ 10M. At
the initial separation, the spin directions are perturbed such
that there is a misalignment of 1° in the spins from the exact

up-down configuration. The response to this perturbation is
initially tight polar oscillations (black dots in Fig. 2) of the
BH spins around the aligned configuration. After the onset
of instability, precession induces large spin misalignments
(colored tracks in Fig. 2).

FIG. 1. The four binary BH configurations with aligned spins. The BH with higher (lower) mass is indexed by the number 1 (2). We
refer to the orientation of a BH whose spin vector Si is parallel (antiparallel) to the orbital angular momentum vector L as “up”
(“down”). The four distinct binary configurations are then labeled with the orientation of the primary (secondary) BH appearing before
(after) the hyphen.

FIG. 2. Numerical evolution of the normalized spins Ŝi ¼ Si=Si
of a BH binary with mass ratio q ¼ 0.5 and dimensionless spins
χ1 ¼ χ2 ¼ 1. The blue (red) curve traces the path of the spin
vector S1 (S2) of the heavier (lighter) BH over the evolution. The
integration is performed from a binary separation r ¼ 1000M to
10M; the colors of the curves darken with decreasing separation.
The binary is initialized with misalignments of 1° in the BH spins
from the up-down configuration. The vertical z-axis is initially
aligned to the total angular momentum, the x-axis is constructed
such that the initial orbital angular momentum lies in the x − z
plane, and the y-axis completes the orthogonal frame. The black
dots show the location of the spins for r > rudþ ≃ 34M, before
the onset of instability. The arrows show the orientation of the
spins at the final separation r ¼ 10M. The binary is approaching
the endpoint listed in Eq. (2). An animated version of this figure is
available at www.davidegerosa.com/spinprecession.
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A key question so far unanswered is the following: after
becoming unstable, to what configuration do up-down
binaries evolve? In other words: what is the endpoint of
the up-down instability?
In this paper, we present a detailed study on the onset and

evolution of unstable up-down binary BHs. In Sec. II we
provide a novel derivation of the stability onset directly
from the orbit-averaged 2PN spin precession equations. We
test the robustness of the result with numerical PN
evolutions of BH binaries and find that unstable binaries
tend to cluster in specific locations of the parameter space
by the end of their evolutions. In Sec. III we explore this
observation analytically. Previous investigations [40] high-
lighted connections between the up-down instability and
the so-called spin-orbit resonances [42]—peculiar BH
binary configurations where the two spins and the angular
momentum remain coplanar. We present a new semian-
alytic scheme to locate the resonances and confirm that the
evolution of the up-down instability is inherently connected
to the nature of these configurations.
We obtain a surprisingly simple result (Sec. IV): after

undergoing the instability, up-down binaries tend to the
very special configuration where the two BH spins S1 and
S2 are coaligned with each other and equally misaligned
with the orbital angular momentum L. More specifically,
the endpoint of the up-down instability is a precessing
configuration with (using hats to denote unit vectors)

Ŝ1 ¼ Ŝ2 and Ŝ1 · L̂ ¼ Ŝ2 · L̂ ¼ χ1 − qχ2
χ1 þ qχ2

: ð2Þ

From the distribution of endpoints of populations of up-
down binaries, we characterize the typical conditions
required for such binaries to become unstable before the
end of their evolutions and the typical growth time of the
precessional instability. We then explore the astrophysical
relevance of our finding for a population of stellar-mass
BH binaries formed in AGN disks, and finally draw our
concluding remarks (Sec. V).

II. INSTABILITY THRESHOLD

A. 2PN binary black hole spin precession

We denote vectors in bold, e.g., v, magnitudes with
v ¼ jvj, and unit vectors with v̂. Throughout the paper we
use geometrical units G ¼ c ¼ 1. Let us consider binary
BHs with component masses m1 and m2, total mass
M ¼ m1 þm2, mass ratio q ¼ m2=m1 ≤ 1 and symmetric
mass ratio η ¼ q=ð1þ qÞ2. We denote the binary separa-
tion with r and the Newtonian angular momentum with
L ¼ ηðM3rÞ1=2. The spins of the two BHs are denoted by
Si ¼ m2

i χiŜi (i ¼ 1, 2), where 0 ≤ χi ≤ 1 are the dimen-
sionless Kerr parameters. The total spin is S ¼ S1 þ S2 and
the total angular momentum is J ¼ Lþ S. We consider

orbital separations r ≥ 10M, which is taken as the break-
down of the PN approximation [43–45].
There are three timescales on which generically precess-

ing binary BHs evolve:
(i) the orbital timescale, given by the Keplarian ex-

pression torb=M ≃ ðr=MÞ3=2, on which the BHs orbit
each other,

(ii) the precession timescale, torb=M ≃ ðr=MÞ5=2, on
which S1, S2, and L change direction [9], and

(iii) the radiation-reaction timescale, torb=M ≃ ðr=MÞ4,
on which the binary separation shrinks due to GW
emission [46].

In the post-Newtonian (PN) regime r ≫ M these timescales
are separated, so that

torb ≪ tpre ≪ tRR: ð3Þ

The BHs orbit each other many times before completing
one precession cycle, and complete many precession cycles
before the binary separation decreases. This hierarchy of
timescales allows each part of the binary dynamics—the
orbital, precessional, and radiation-reaction motion—to
be addressed independently. The inequality torb ≪ tpre
has been used to study precession in binary BHs by
averaging the motion over the orbital period (e.g.,
[42,47]). Further, the inequality tpre ≪ tRR has been used
to separate the precessional motion from the GW-driven
inspiral [38,39,48–50].
The 2PN orbit-averaged equations describing the evo-

lutions of the BH spins and the orbital angular momentum
read [47]

dS1

dt
¼ 1

2r3

��
4þ 3q −

3M2qξ
ð1þ qÞL

�
Lþ S2

�
× S1; ð4aÞ

dS2

dt
¼ 1

2r3

��
4þ 3

q
−

3M2ξ

ð1þ qÞL
�
Lþ S1

�
× S2; ð4bÞ

dL
dt

¼ 1

2r3

��
4þ 3q −

3M2qξ
ð1þ qÞL

�
S1

þ
�
4þ 3

q
−

3M2ξ

ð1þ qÞL
�
S2

�
×Lþ dL

dt
L̂; ð4cÞ

where ξ is the projected effective spin (often referred to as
χeff [1,51]),

ξ ¼ 1

M2

�
ð1þ qÞS1 þ

�
1þ 1

q

�
S2

�
· L̂: ð5Þ

On the precessional timescale, dL=dt ≃ 0 and the evolu-
tionary equations describe precessional motions of the
three vectors L, S1, and S2 about J. The evolution on
the longer radiation-reaction timescale is supplemented by
a PN equation for dL=dt. In this paper we include (non)
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spinning terms up to 3.5PN (2PN); cf., e.g., Eq. (27)
in Ref. [52].
The effective spin ξ is a constant of motion of the orbit-

averaged problem at 2PN in spin precession and 2.5PN in
radiation reaction [47]. The magnitudes S1 and S2 of the
BHs spins are also constant. On the short precessional
timescale, the separation r and total angular momentum

J ¼ jLþ S1 þ S2j ð6Þ

are conserved. The entire precessional dynamics can
be parametrized with a single variable, the total spin
magnitude [38,39]

S ¼ jS1 þ S2j: ð7Þ

Excluding the case of transitional precession where J ∼ 0

[9], the direction Ĵ is conserved to very high accuracy also
on the longer radiation-reaction timescale [49].
In a noninertial frame coprecessing with L̂, we define the

relative orientations of the spin directions by the angles θi
between Ŝi and L̂ and the angle ΔΦ between the projec-
tions of the spins onto the orbital plane (see Fig. 3 for a
schematic representation):

cos θ1 ¼ Ŝ1 · L̂; ð8aÞ

cos θ2 ¼ Ŝ2 · L̂; ð8bÞ

cosΔΦ ¼ Ŝ1 × L̂

jŜ1 × L̂j ·
Ŝ2 × L̂

jŜ2 × L̂j : ð8cÞ

For given values of q, χ1, and χ2, the mutual orientations
of the three vectors L, S1, and S2 can be parametrized

equivalently in terms of either (ξ, J, S) or ðθ1; θ2;ΔΦÞ. The
conversion between the two sets of variables is given
explicitly in Eqs. (8–9) of Ref. [52].

B. Binary black hole spins as harmonic oscillators

One can immediately prove that binaries with aligned
spins L̂ ¼ Ŝ1 ¼ Ŝ2 are equilibrium solutions of Eqs. (4a)–
(4c). The stability of the solutions is determined by their
response to small perturbations. The investigations of
Ref. [40] indicate that the up-down instability develops
on the short precessional timescale tpre. In this regime, all
variables can be kept constant but S.
The evolution of S is determined directly by Eqs. (4a)

and (4b):

dS2

dt
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6S6 þ a4S4 þ a2S2 þ a0

q
; ð9Þ

where

A ¼ −
3ð1 − q2Þ

q
S1S2

�
M3η2

L2

�
3

ðL −M2ηξÞ; ð10aÞ

a6 ¼ −
q

4ð1 − qÞ2S21S22L2
; ð10bÞ

a4 ¼ −a6q−1½ð1þ q2ÞL2 − 2qJ2 þ 2M2qξL

− ð1 − qÞðqS21 − S22Þ�; ð10cÞ

a2 ¼ a6q−1fqð1þ qÞ2J4
− 2ð1þ qÞ2J2½qL2 þM2qξL − ð1 − qÞðqS21 − S22Þ�
þ ð1þ qÞ2L2½qL2 − 2ð1 − qÞðS21 − qS22Þ�
þ 2ð1þ qÞM2qξL½ð1þ qÞL2 − ð1 − qÞðS21 − S22Þ�
þ 4M4q2ξ2L2g; ð10dÞ

a0 ¼ a6q−1fð1þ qÞJ4ðqS21 − S22Þ
− 2J2½ð1þ qÞðqS21 − S22ÞL2 þ ðS21 − S22ÞM2qξL�
− L2½ð1 − q2ÞðS21 − S22Þ2 − ð1þ qÞðqS21 − S22ÞL2

− 2M2qξLðS21 − S22Þ�g: ð10eÞ

The conservation of ξ, J, L, S1, and S2 over tpre implies that,
after taking a second time derivative, only the derivatives of
S2 survive and Eq. (9) becomes

d2S2

dt2
¼ A2

2
ð3a6S4 þ 2a4S2 þ a2Þ: ð11Þ

By rearranging the right-hand side of Eq. (11) we find that
the time evolution for a perturbation S2 − S2� to some
solution S� of Eq. (9) is determined by

FIG. 3. The noninertial frame aligned with the orbital angular
momentum L. The angle between each spin vector Si and L is
denoted by θi (i ¼ 1, 2), while the angle between the projections
of the two spins onto the orbital plane is denoted by ΔΦ.
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d2ðS2 − S2�Þ
dt2

¼ A2

�
3

2
a6ðS2 − S2�Þ2 þ ð3a6S2� þ a4Þ

× ðS2 − S2�Þ þ
3

2
a6S4� þ a4S2� þ

a2
2

�
: ð12Þ

For binary configurations with the BH spins aligned with
the orbital angular momentum we may write the magnitude
of the total spin as

S� ¼ jα1S1 þ α2S2j; ð13Þ

where αi ¼ cos θi� ¼ �1 discriminates between parallel
(αi ¼ þ1) and antiparallel (αi ¼ −1) alignment of Si� with
L. For instance, up-down corresponds to α1 ¼ −α2 ¼ 1.
Because J and ξ are constant on tpre one has

J ≃ J� ¼ jLþ α1S1 þ α2S2j; ð14aÞ

ξ ≃ ξ� ¼
1

M2

�
ð1þ qÞα1S1 þ

�
1þ 1

q

�
α2S2

�
; ð14bÞ

which implies that

3

2
a6S4� þ a4S2� þ

a2
2
¼ 0: ð15Þ

Therefore, to leading order OðS2 − S2�Þ in the perturbation
(i.e., assuming small misalignments between the BH spins
and the orbital angular momentum), the total spin magni-
tude S of binary BHs with nearly aligned spins satisfies

d2

dt2
ðS2 − S2�Þ þ ω2ðS2 − S2�Þ ≃ 0: ð16Þ

Equation (16) has the form of a simple harmonic oscillator
equation, where we identify the oscillation frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A2ð3a6S2� þ a4Þ

q
: ð17Þ

The stability of the aligned spin configurations is
determined by the sign of ω2:

(i) When ω2 > 0, Eq. (16) describes simple harmonic
oscillations in S2 around S2�. The configuration is
stable; small perturbations will cause precessional
motion about the alignment.

(ii) When ω2 ¼ 0, S2 remains constant. This condition
marks the onset of an instability.

(iii) When ω2 < 0, the oscillation frequency becomes
complex, corresponding to an instability in the
precessional motion leading to large misalignments
of S1 and S2 with L.

The points during the evolution of the binary BH at
which the precession motion transitions from stable to
unstable, or vice-versa, correspond to the solutions of

ω2 ¼ 0. Since L (or equivalently r) is a monotonically
decreasing function of time on the radiation-reaction time-
scale, such a point is a stable-to-unstable transition if
dω2=dL > 0 (dω2=dt < 0) and an unstable-to-stable tran-
sition if dω2=dL < 0 (dω2=dt > 0).
The square of the oscillation frequency depends on L

according to

ω2ðLÞ ¼
�
L2 − 2

qα1S1 − α2S2
1− q

Lþ
�
qα1S1 þ α2S2

1− q

�
2
�

×

�
L−

qα1S1 þ α2S2
1þ q

�
2
�
3M9q5ð1− qÞ
2ð1þ qÞ11L7

�
2

: ð18Þ

It is clear from Eq. (18) that ω2 always has four roots, with
two being the repeated root

L0 ¼
qα1S1 þ α2S2

1þ q
: ð19Þ

The corresponding value of the binary separation r0 ¼
M−3η−2L2

0 always satisfies r0 ≤ M and is thus unphysical.
The other two roots are

L� ¼ qα1S1 − α2S2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qα1α2S1S2

p
1 − q

: ð20Þ

For L� to be real, we require that α1α2 ¼ −1, leaving only
the cases up-down and down-up. If α1 ¼ −α2 ¼ −1 (down-
up), then L� ¼ −ð ffiffiffiffiffiffiffiffi

qS1
p � ffiffiffiffiffi

S2
p Þ2=ð1 − qÞ which is always

nonpositive and can be discarded as unphysical. The only
combination of α1 and α2 which makes L� both real and
non-negative, thus indicating a physical precession insta-
bility, is α1 ¼ −α2 ¼ 1, which corresponds to the up-down
configuration. Therefore, the up-up, down-down and down-
up binary BH configurations are stable, whereas the up-
down configuration can become unstable at separations
where ω2 < 0. Any small misalignment of the BH spins
with the orbital angular momentum leads to small oscil-
lations of the spin vectors around the aligned configuration
in the former three cases, but might cause large misalign-
ments in the latter case.
In terms of only the parametersM, q, χ1 and χ2 of the BH

binary, the expressions for the binary separations corre-
sponding to the roots L� in the case of up-down spin
alignment are

rud� ¼ ð ffiffiffiffiffi
χ1

p � ffiffiffiffiffiffiffi
qχ2

p Þ4
ð1 − qÞ2 M; ð21Þ

which are precisely those derived in Ref. [40] by
other means. A third, alternative derivation is provided
in Appendix A.
The oscillation frequency of the up-down configuration

is given in terms of r by
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M2ω2
udðrÞ ¼

9

4

�
1 − q
1þ q

�
2
�
M
r

�
5	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
rud0=r

p 

2

×
	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rudþ=r

p 
	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rud−=r

p 

; ð22Þ

where

rud0 ¼
�
χ1 − qχ2
1þ q

�
2

M ð23Þ

is the repeated root identified previously. One has

lim
r=M→∞

M2ω2
udðrÞ ¼

9

4

�
1 − q
1þ q

�
2
�
M
r

�
5

> 0; ð24Þ

and hence the up-down configuration tends to stability at
large orbital separations (past time infinity). Since rudþ >
rud−, the point r ¼ rudþ is a stable-to-unstable transition
and r ¼ rud− is an unstable-to-stable transition. In other
words, dω2

ud=drjrudþ > 0 and dω2
ud=drjrud− < 0. The up-

down configuration is unstable for orbital separations
rudþ > r > rud−. An example of the behavior of ω2 is
given in Fig. 4.
In the equal-mass limit q → 1, the precessional motion

of up-down binaries tends to stability, since the time
derivative of the total spin magnitude S vanishes [48].

In the test-particle limit q → 0, the behavior also tends to
stability because S ≃ S1 is constant.
For an up-down binary to undergo the precessional

instability, its parameters q, χ1, and χ2 must be such that
the resulting instability onset satisfies rudþ > 10M, as this
threshold represents the breakdown of the PN approxima-
tion [43–45]. Figure 5 shows contours in the χ1 − χ2 plane
for various values of q where rudþ ¼ 10M. For mass ratios
close to unity, binaries with smaller dimensionless spins
still result in a physical (rudþ > 10M) onset of instability.
As the mass ratio becomes more extreme (q → 0), only
binaries with χi ∼ 1 are affected by the instability, though
much later in the inspiral.

C. Numerical verification of the instability

The analysis of Sec. II B is valid up to the onset of the
precessional instability at the value of the binary separation
r ¼ rudþ, at which point spin precession invalidates the
approximation of small misalignments between the BH
spins and the orbital angular momentum. We therefore
verify the existence of the instability with evolutions of
binary BH spins performed via direct numerical integra-
tions of the orbit-averaged spin precession equations. The
integrations are performed using the PYTHON module
PRECESSION [52].
The binaries are evolved from an initial separation

r ¼ 1000M down to a final separation r ¼ 10M. The
integrations are initialized by setting θ1, θ2, and ΔΦ (or
equivalently ξ, J and S) at the initial separation. The initial
value of ΔΦ is irrelevant (for these evolutions it was set to

FIG. 4. Oscillation frequencies for the four aligned configura-
tions as a function of the binary separation r. The squared
frequency ω2 is scaled by r5 for clarity; see Eq. (22). The up-
down configuration (red line) shows qualitatively different
behavior to the other aligned configurations, with its oscillation
frequency ωud becoming complex (i.e., ω2

ud < 0) between rud�
(dashed lines). In this example, the mass ratio is q ¼ 0.9, the
dimensionless spins are χ1 ¼ 1.0 and χ2 ¼ 0.1, and the region of
instability is given by rudþ ≃ 285.6M and rud− ≃ 24.0M.

FIG. 5. Contours of constant mass ratio q for values of the
dimensionless spins χi that result in an instability threshold
rudþ ¼ 10M. Above each curve is the region of parameter space
in which an up-down binary will experience the precessional
instability at an orbital separation r > 10M. Below the curves, the
instability takes place later in the inspiral where our PN approach
is not valid.
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π=2). We introduce an initial perturbation to each configu-
ration by setting the initial values of θi to be 5° from the
aligned configuration. A number of binary BHs with varied
mass ratios and dimensionless spins were evolved in this
way to verify the existence of the instability. As an
example, the evolution of four binaries, one in each of
the aligned spin configurations, with q ¼ 0.8, χ1 ¼ 1.0,
and χ2 ¼ 0.5 is displayed in Fig. 6.
In the exactly-aligned configurations each of θi and S is

constant, since such configurations are equilibrium solu-
tions of Eqs. (4a)–(4c). In the absence of the precessional
instability, a small perturbation to θ1 and/or θ2 causes small
amplitude oscillations around the equilibrium solutions.
For a perturbation in the angles as small as 5°, a binary acts
essentially as it would in the equilibrium configurations, as
seen in the first three panels of Fig. 6: the angles θi remain
approximately fixed at their initial values. For the configu-
rations in which the two BH spin vectors have the same
alignment as each other with respect toL (up-up and down-
down), the total spin magnitude remains at the initial value
S ≃ S1 þ S2. In the down-up configuration, the total spin
magnitude remains at the initial value S ≃ jS1 − S2j.
However, as is clear in the rightmost panel of Fig. 6, in
the up-down configuration the values of S and θi are
not constant. Though initially S≃jS1−S2j and cos θ1 ¼
− cos θ2 ≃ 1, after reaching the onset of the instability at
r ¼ rudþ ≃ 177.5M the precessional motion moves the
binary away from the initial up-down configuration.

In Fig. 7 we test the response of the up-down instability
to the amplitude of the initial perturbation. We evolve
samples of binaries from r ¼ 1000M to r ¼ 10M and show
their values of S at both the initial and the final separations.
Binaries are initialized by extracting the misalignments
from half-Gaussian distributions in cos θi (i ¼ 1, 2) with
widths 1 − cos δθ centred on the exact up-down configu-
ration, where δθ ¼ 1°; 5°; 10°; 20°. The initial value of ΔΦ
is irrelevant and is here extracted uniformly in ½−π; π�. In
this example we fix q ¼ 0.8, χ1 ¼ χ2 ¼ 0.9.
Our numerical evolutions show a somewhat surprising

result: binaries do not tend to disperse in parameter space
as one would expect from an instability, but present a well-
defined endpoint. This effect is sharper for binaries very
close to up-down. Increasing the initial misalignment δθ
dilutes both the initial and the final spin distributions,
although the same trend remains present up to δθ ≲ 20°.
Binaries that undergo the up-down instability at some large
separation are likely to be found in a different, but very
specific region of the parameter space at the end of the
inspiral. We now aim to find this location analytically.

III. RESONANT CONFIGURATIONS

Spin-orbit resonances [42] are special configurations
where the three vectors L, S1, and S2 are coplanar and
jointly precess about J. There are two families of resonant
solutions, defined by ΔΦ ¼ 0 and ΔΦ ¼ π. The previous

FIG. 6. Numerical evolutions of the total spin magnitude S and misalignment angles cos θi of four binary BHs with parameters
q ¼ 0.8, χ1 ¼ 1.0 and χ2 ¼ 0.5, starting from an initial separation r ¼ 1000M and ending at r ¼ 10M. Each panel shows a binary
initially in a configuration with aligned spins up to a small perturbation of 5° in the angles θi. The vertical dashed line in the right-most
panel (up-down) shows the location of the instability onset rudþ ≃ 177.5M. The horizontal dashed lines mark the formal endpoint of the
up-down instability obtained in the r=M → 0 limit (Sec. IVA).
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analysis of Ref. [40] indicated that the up-down configu-
ration at separations r > rudþ (r < rud−) is ΔΦ ¼ 0
(ΔΦ ¼ π) resonance. The end-point of the up-down insta-
bility is thus deeply connected to the evolution of these
special solutions. As a building block to analyze the
up-down configuration, in this section we present new
advances toward understanding spin-orbit resonances in a
semianalytic fashion.

A. Locating the resonances

For fixed values of q, χ1, χ2, J, and L, geometrical
constraints restrict the allowed values of S and ξ to [39]

Smin ≤ S ≤ Smax; ð25aÞ
ξ−ðSÞ ≤ ξ ≤ ξþðSÞ; ð25bÞ

where

Smin ¼ maxfjJ − Lj; jS1 − S2jg; ð26aÞ

Smax ¼ minfJ þ L; S1 þ S2g; ð26bÞ

ξ� ¼
�
J2 − L2 − S2

4qM2S2L
½ð1þ qÞ2S2 − ð1 − q2ÞðS21 − S22Þ�

� ð1 − q2Þ½J2 − ðL − SÞ2�1=2½ðLþ SÞ2 − J2�1=2

× ½S2 − ðS1 − S2Þ2�1=2½ðS1 þ S2Þ2 − S2�1=2
�
:

ð26cÞ
Together, the functions ξ�ðSÞ form a closed convex loop
in the S − ξ plane, which implies that the inequalities
(25a)–(25b) can be rewritten as

S− ≤ S ≤ Sþ; ð27Þ

where S� are the solutions of ξ ¼ ξ�ðSÞ. One can trivially
prove that the condition ξ ¼ ξ�ðSÞ is equivalent to
either alignment (sin θi ¼ 0) or coplanarity (sinΔΦ ¼ 0).
Generic spin precession can be described as a quasiperiodic
motion of S between the two solutions S�. Spin-orbit
resonances correspond to the specific case where S− ¼ Sþ,
i.e., dξ�=dS ¼ 0. In this case, S is constant: the three
momenta are not just coplanar, but stay coplanar on the
precession timescale tpre. As we will see later in Sec. III C,
coplanarity is also preserved on the longer radiation-
reaction timescale trad.
The conditions ξ ¼ ξ�ðSÞ can be squared and cast into

the convenient form

ΣðS2Þ≡ σ6S6 þ σ4S4 þ σ2S2 þ σ0 ¼ 0; ð28Þ

where the coefficients σi are real multiples of the ai in
Eqs. (10b)–(10e) and are given explicitly in Appendix B.
The existence of physical solutions can be characterized

using the discriminant

Δ≡σ24σ
2
2−4σ6σ

3
2−4σ34σ0−27σ26σ

2
0þ18σ6σ4σ2σ0: ð29Þ

In particular:
(i) If Δ > 0, then ΣðS2Þ has three distinct real roots.

These are the physical solutions S− and Sþ identified
in Ref. [39], plus a spurious root that does not satisfy
Eqs. (25a) and (25b).

(ii) If Δ ¼ 0, the two solutions S− and Sþ coincide and
correspond to a spin-orbit resonance.

FIG. 7. The response of the up-down instability to different initial perturbations. Each panel shows a set of 1000 orbit-averaged
evolutions. Binaries are initialized at r ¼ 1000M with misalignments extracted from truncated Gaussians centered on the up-down
configuration with widths δθ ¼ 1°; 5°; 10°; 20°, increasing progressively from the left to the right panel. Blue (orange) histograms show
the corresponding values of the total spin S at r ¼ 1000M (r ¼ 10M). In this example we fix q ¼ 0.8 and χ1 ¼ χ2 ¼ 0.9. Vertical
dashed lines at S ¼ jS1 � S2jmark the asymptotic locations of up-down binaries before and after the instability. An animated version of
this figure is available at www.davidegerosa.com/spinprecession.
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(iii) If Δ < 0, the polynomial ΣðS2Þ only admits one
spurious real root, thus implying that the geometrical
constraints in Eqs. (25a) and (25b) cannot be satisfied
for the assumed set of parameters ðq; χ1; χ2; J; ξ; LÞ.

Therefore, physical spin precession takes place whenever
Δ ≥ 0. The limiting case of the spin-orbit resonances can
be located by solving Δ ¼ 0.
The discriminant reported in Eq. (29) may be recast as a

fifth-degree polynomial in J2,

ΔðJ2Þ ¼ δ10J10 þ δ8J8 þ δ6J6 þ δ4J4 þ δ2J2 þ δ0; ð30Þ

where the coefficients δi are lengthy (but real and algebraic)
expressions containing q, S1, S2, ξ, and L; see Appendix B.
In particular,

δ10 ¼ −4q3ð1 − qÞ2ð1þ qÞ8L2 ≤ 0: ð31Þ

B. Number of resonances

Any fifth-degree polynomial has at most two bound
intervals and one unbound interval in which it is positive.
The two bounds intervals are the only possible locations in
which spin precession can occur. We now prove that only
one of these can be physical.
To this end, it is useful to look at the asymptotic limit

r → ∞. While J diverges in this limit, one has [39]

κ∞ ≡ lim
r=M→∞

S · L̂ ¼ lim
r=M→∞

J2 − L2

2L
¼ constant: ð32Þ

The constraints j cos θ1j ≤ 1 and j cos θ2j ≤ 1 can be
translated into

κ∞ ≥ max

�
M2ξ − ðq−1 − qÞS1

1þ q−1
;
M2ξ − ðq−1 − qÞS2

1þ q

�
;

ð33Þ

κ∞ ≤ min

�
M2ξþ ðq−1 − qÞS1

1þ q−1
;
M2ξþ ðq−1 − qÞS2

1þ q

�
:

ð34Þ

Therefore, the support of ðJ2 − L2Þ=2L (hence J) is a
single bounded interval at large separations: only one range
of J is allowed and is it bounded by two resonances.
Proving by contradiction, let us now assume that the
support of J does not remain a single interval. A bifurcation
would be present at some finite separation where the
number of valid ranges goes from one to two. At this
bifurcation point, two different values of dJ=dr must
coexist for the same values of q, χ1, χ2, ξ, J. This is only
possible if the two configurations have different values of
S. However, at the bifurcation point one necessarily has
ΣðS2Þ ¼ 0 and thus only one value of S is allowed.

Our proof is consistent with the extensive numerical
exploration presented in Refs. [38,39]: there are always two
spin-orbit resonances for any values of q, χ1, χ2, ξ, and r.
The two resonances are characterized by ΔΦ ¼ 0 and
ΔΦ ¼ π. In particular, the ΔΦ ¼ 0 (ΔΦ ¼ π) resonance
corresponds to the maximum (minimum) value of J, i.e.,

JðΔΦ¼πÞ ≤ J ≤ JðΔΦ¼0Þ: ð35Þ

An example is shown in Fig. 8. The region of J2 where
physical spin precession takes place is characterized by
ΔðJ2Þ > 0. The spin-orbit resonances correspond to two of
the roots of ΔðJ2Þ ¼ 0.

C. Evolution of resonances

Next, we prove that a binary in a resonant configuration
remains resonant under radiation reaction.
Let us label two binaries A and B. The binaries share the

same values of the radiation-reaction constants of motions
q; χ1; χ2, and ξ. Suppose binary A is a ΔΦ ¼ 0 resonance at
separation r and binary B is a ΔΦ ¼ 0 resonance at rþ δr.
Again by contradiction, let us now assume that A and B do
not coincide. From Eq. (35) one has JAðrÞ > JBðrÞ and
JAðrþ δrÞ < JBðrþ δrÞ. At some location r < r̃ < rþ δr
one must have JAðr̃Þ ¼ JBðr̃Þ, but dJA=drjr̃ ≠ dJB=drjr̃. In
other terms, the inspiral trajectory of the two binaries must

FIG. 8. The discriminant Δ of the third-degree polynomial Σ as
a function of J2 for a binary BH at a separation r ¼ 10M with
mass ratio q ¼ 0.8, dimensionless spins χ1 ¼ χ2 ¼ 1 and effec-
tive spin ξ ¼ −0.2. The discriminant has three real roots (vertical
dashed lines). The shaded area between the two roots in which
Δ ≥ 0 corresponds to the region in which physical spin pre-
cession takes place. This region is bounded on the right (left) by
the ΔΦ ¼ 0 (ΔΦ ¼ π) resonance.
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cross in the J–r plane. This is possible only if the two
binaries have different values of S at r̃, i.e., SAðr̃Þ ≠ SBðr̃Þ.
Taking the limit δr=M → 0, the location of the crossing
point can be made arbitrarily close to the initial separation
r. At this location, JA ¼ JB identifies a resonance, where
only one value of S is allowed. It follows that the two
binaries A and Bmust coincide. An analogous proof can be
carried out for ΔΦ ¼ π.

D. Resonance asymptotes

Further progress can be made by studying the dynamics
of resonant configurations at infinitesimal separations
r=M → 0 (or equivalently L=M2 → 0). Although unphys-
ical, this limit provides the asymptotic conditions of our PN
evolutions.
Let us denote the effective spin of the up-up and up-

down configuration with respectively

ξuu ¼
1

M2

�
ð1þ qÞS1 þ

�
1þ 1

q

�
S2

�
; ð36aÞ

ξud ¼
1

M2

�
ð1þ qÞS1 −

�
1þ 1

q

�
S2

�
: ð36bÞ

As r=M → 0, one has that J → S and Δ is increasingly
dominated by the term with the least power of L. In
particular, one gets

lim
L=M2→0

Δ
δ10

¼
Y5
j¼1

ðS2 − λjÞ: ð37Þ

The roots λi of this expression are given by

λ1 ¼ λ2 ¼
ð1 − qÞðqS21 − S22Þ

q
; ð38aÞ

λ3 ¼
ð1 − qÞðqS21 − S22Þ

q
þ M4qξ2

ð1þ qÞ2 ; ð38bÞ

λ4 ¼ ðS1 − S2Þ2; ð38cÞ

λ5 ¼ ðS1 þ S2Þ2: ð38dÞ
The constraint jξj ≤ ξuu implies the following series of
inequalities:

λ1 ¼ λ2 ≤ minfλ3; λ4g ≤ maxfλ3; λ4g ≤ λ5; ð39Þ
with

maxfλ3; λ4g ¼
�
λ4 if jξj ≤ jξudj;
λ3 if jξj > jξudj:

ð40Þ

Since Δ ≤ 0 as J → þ∞ [cf. Eq. (31)], the two bounded
intervals of J2 in which Δ ≥ 0 are ½λ1;minfλ3; λ4g� and
½maxfλ3; λ4g; λ5�. Furthermore, in this limit Eq. (25a)
reduces to

λ4 ≤ S2 ≤ λ5; ð41Þ

which implies that the single physical interval in which spin
precession takes places is given by

S2 ∈ ½maxfλ3; λ4g; λ5�: ð42Þ
The boundaries S ¼ maxf ffiffiffiffiffi

λ3
p

;
ffiffiffiffiffi
λ4

p g and S ¼ ffiffiffiffiffi
λ5

p
of this

region identify the asymptotic locations of the ΔΦ ¼ π and
ΔΦ ¼ 0 resonances, respectively. Thus, the value SðΔΦ¼0Þ
of S in the ΔΦ ¼ 0 spin-orbit resonance asymptotes to

lim
r=M→0

SðΔΦ¼0Þ ¼ S1 þ S2; ð43Þ

and the value SðΔΦ¼πÞ of S in the ΔΦ ¼ π resonance
asymptotes to

lim
r=M→0

SðΔΦ¼πÞ ¼

8>>><
>>>:

jS1 − S2j if jξj ≤ jξudj;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−qÞðqS2

1
−S2

2
Þ

q þ M4qξ2

ð1þqÞ2
q
if jξj > jξudj:

ð44Þ

The corresponding values of the misalignment angles θi are
found by imposing the coplanarity condition sinðΔΦÞ ¼ 0
that characterizes the resonances. This yields

sin2θ1sin2θ2 ¼
�
S2 − S21 − S2

2S1S2
− cos θ1 cos θ2

�
2

; ð45Þ

which can be solved together with Eq. (5) to find cos θ1 and
cos θ2. For the ΔΦ ¼ 0 resonance one gets

lim
r=M→0

cos θðΔΦ¼0Þ
1 ¼ lim

r=M→0
cos θðΔΦ¼0Þ

2 ¼ ξ

ξuu
: ð46Þ

In words, the two spins tend to be equally misaligned with
L but coaligned with each other. Hints of this trend had
been reported in Refs. [19,42,53]. For ΔΦ ¼ π, the angles
asymptote to

lim
r=M→0

cos θðΔΦ¼πÞ
1 ¼

8>>>>>><
>>>>>>:

ξ

ξud
if jξj ≤ jξudj;

ξ2 þ ξuuξud
2ð1þ qÞS1ξ

M2

if jξj > jξudj;

ð47aÞ

lim
r=M→0

cos θðΔΦ¼πÞ
2 ¼

8>>>>><
>>>>>:

−
ξ

ξud
if jξj ≤ jξudj;

qðξ2 − ξuuξudÞ
2ð1þ qÞS2ξ

M2

if jξj > jξudj:

ð47bÞ

Figure 9 shows the evolution of four resonant configura-
tions for ΔΦ ¼ 0; π and the two cases jξj ≤ jξudj and
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jξj > jξudj. At each separation we locate the roots of
ΣðS2Þ ¼ 0 numerically using the algorithm implemented
in the PRECESSION code [52]. Because resonant binaries
remain resonant during the inspiral (Sec. III C), those
curves also correspond to individual evolutions. As r=M →
0, binaries asymptote to the limits predicted above.

IV. UP-DOWN ENDPOINT

A. Instability limit

The analysis of Sec. III allows us to find the asymptotic
endpoint of the up-down configuration. As first shown in
Ref. [40], the up-down configuration is a ΔΦ ¼ 0 reso-
nance for r > rudþ. This can be immediately seen using the
expressions in Sec. III B. As r=M → ∞, the up-down
configuration corresponds to κ∞ ¼ S1 − S2 which max-
imizes the allowed range of κ∞ given in Eqs. (33) and (34),

and hence that of J. The largest value of J for a given ξ
corresponds to the ΔΦ ¼ 0 resonance [cf. Eq. (35)].
A binary which is arbitrarily close to up-down before the

instability onset, therefore, will be arbitrarily close to a
ΔΦ ¼ 0 spin-orbit resonance. As shown in Sec. III C,
resonant binaries remain resonant during the entire inspiral.
The formal r=M → 0 limit of the up-down instability is
that of a ΔΦ ¼ 0 resonance with the correct value of the
effective spin. This can be obtained directly from Eqs. (43)
and (46) by setting ξ ¼ ξud.
The key result of this paper is that the endpoint of the up-

down instability consists of a binary configuration with

cos θ1 ¼ cos θ2 ¼
χ1 − qχ2
χ1 þ qχ2

and ΔΦ ¼ 0; ð48Þ

which is equivalent to Eq. (2). Up-down binaries start their
inspiral with S ¼ jS1 − S2j and asymptote to S ¼ S1 þ S2
as given by Eq. (43), thus spanning the entire range of
available values of S, cf. Eq. (25a).
An example is reported in Fig. 6. Despite being obtained

for r=M → 0, the spin configuration in Eq. (48) well
describes the inspiral endpoint. Similarly, Fig. 7 shows
that binaries initially close to the up-down configuration all
evolve to this precise location in parameter space.
Figure 10 illustrates the formal r=M → 0 distribution for

two simple BH populations. In particular, we distribute
mass ratios q either uniformly or according to the astro-
physical population inferred from the first GW events,
pðqÞ ∝ q6.7 (cf. Model B in Ref. [51]; see also Ref. [54]). In
both cases, we take q ∈ ½0.1; 1� and assume spin magni-
tudes χi are distributed uniformly in [0.1, 1]. The LIGO/
Virgo-motivated population strongly favors equal mass
events. For q ≃ 1 the instability endpoint is given by
S=M2 ≃ ðχ1 þ χ2Þ=4 and cos θi ≃ ðχ1 − χ2Þ=ðχ1 þ χ2Þ,
which implies that the corresponding distributions are
peaked at S=M2 ≃ ð0.1þ 1Þ=4 ¼ 0.275 and cos θi ≃ 0. If
q differs from unity, the endpoint values of both S and
cos θi are, on average, larger. For the case where mass ratios
are drawn uniformly, unequal-mass binaries populate the
region of Fig. 10 with S=M2 ≳ 0.5 and cos θi ≳ 0.7.
As a mathematical curiosity, we note that if one

places a binary in the up-down configuration at
r < rud−, this must necessarily be a ΔΦ ¼ π resonance
(cf. Ref. [40]). Indeed, for ξ ¼ ξud Eqs. (47a) and (47b)

return cos θðΔΦ¼πÞ
1 ¼ − cos θðΔΦ¼πÞ

2 ¼ 1. We stress that this
case is not physically relevant. Before reaching rud−,
binaries have already reached rudþ and thus left the up-
down configuration. Unless q is very close to unity and χ2
is very close to zero, the separations rud− is typically
smaller than 10M (or even 1M): it is hard, if not impossible,
to conceive plausible astrophysical mechanisms that
can place binaries in the up-down configuration so close
to merger.

FIG. 9. Evolutions of resonant configurations to small separa-
tions. Top, middle, and bottom panels show S=M2, cos θ1, and
cos θ2, respectively. Blue (orange) curves correspond to reso-
nances withΔ ¼ 0 (Δ ¼ π), while binaries in the left (right) panel
satisfy jξj ≤ jξudj (jξj > jξudj). We fix q ¼ 0.9, χ1 ¼ 0.8,
χ2 ¼ 0.4, ξ ¼ 0.1 (left), 0.4 (right). For this set of parameters
one has ξud ≃ 0.23 and ξuu ≃ 0.61. Dashed gray lines indicate the
r=M → 0 limits predicted in Sec. III D. The region r ≲ 10M
should be considered unphysical but is included to test our
analytical calculations.
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B. Stability-to-instability transition

During the inspiral, unstable up-down binaries evolve
from S ¼ jS1 − S2j to S ¼ S1 þ S2. The transition between
the two values can only start after binaries enters the
instability regime (r < rudþ) and is halted by the merger
(or, to be more conservative, by the PN breakdown). To
quantify the transition properties, it is useful to define the
parameter

δS≡ S − jS1 − S2j
ðS1 þ S2Þ − jS1 − S2j

; ð49Þ

such that δS ¼ 0 corresponds to stability and δS ¼ 1
corresponds to the formal r=M → 0 endpoint.
Figure 11 shows the distribution of δS and rudþ

resulting from numerical integrations of up-down binaries.

We distribute q, χ1, and χ2 uniformly in [0.1, 1] and evolve
from ri ¼ 1000M to rf ¼ 10M. Binaries with rudþ < ri are
initialized as up-down and might become unstable during
the integration. Binaries with rudþ > ri, on the other hand,
are already unstable at the start of our integrations. We
therefore initialized them as ΔΦ ¼ 0 resonances at r ¼ ri.
In both cases, we introduce a misalignment perturbation
δθ ¼ 10° following the same procedure of Sec. II C.
We consider the largest value of δS reached between ri

and rf ; in practice, this is very similar to its value at the end
of the evolution, i.e., maxr δSðrÞ ≃ δSðrfÞ. If rudþ ≲ 10M,
up-down binaries are still stable at the end of our evolutions
and thus maxr δS ≃ 0. If the instability onset occurs ear-
lier, binaries start transitioning toward larger values of δS.

FIG. 10. Analytic up-down endpoint distribution in the r=M →
0 limit. Top and bottom panels show the endpoint distributions of
S and cos θ1 ¼ cos θ2. Blue histograms are obtained distributing
q uniformly; orange histograms assume pðqÞ ∝ q6.7 as observed
by LIGO/Virgo [51]. In both cases, we distribute χ1 and χ2
uniformly and assume q; χ1; χ2 ∈ ½0.1; 1�.

FIG. 11. Distribution of maxr δS and δr as function of the
instability onset rudþ for a statistical sample of 1000 up-down
binaries. We distribute q, χ1, and χ2 uniformly in [0.1, 1], evolve
from ri ¼ 1000M to rf ¼ 10M, and initialize the spin misalign-
ments from Gaussian distributions with widths δθ ¼ 10° centered
on the up-down configuration. The blue (orange) subpopulation
indicates sources that do (not) reach δS ¼ 0.5 by the end of the
inspiral. By definition, δr can only be computed for the
subpopulation with maxr δS > 0.5, with a minimum value of
δr ≤ rudþ − rf (dashed line).
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We find that the vast majority of sources with rudþ ≳ 50M
are able to reach the predicted endpoint (maxr δS≳ 0.95)
before the PN breakdown. As long as the instability has
enough time to develop, the formal r=M → 0 limit appears
to provide a faithful description of dynamics. In the
intermediate cases with 10M ≲ rudþ ≲ 50M, the instability
takes places shortly before the PN breakdown and, con-
sequently, δS does have enough time to reach unity.
The transition between the two regimes appears to be

rather sharp, taking place over a short interval in r. To better
quantify this observation, we define the instability growth
“time” as the difference between the instability onset rudþ
and the separation where δS ¼ 0.5, i.e.,

δr≡ rudþ − rδS¼0.5: ð50Þ

The bottom panels of Fig. 11 illustrates the behavior of δr
for the same population of BHs. The quantity δr can only
be computed for binaries that reach δS ¼ 0.5 before the end
of the evolution, thus setting the constrain δr ≤ rudþ − rf .
The fraction of unstable binaries (those that reach δS ≥ 0.5)
in this population is 35%. We find that the typical transition
intervals are δr≲ 100M, with a peak at δr ≃ 25M, so the
instability develops over a short period and unstable
binaries quickly reach values of S close to the endpoint.

C. A simple astrophysical population

We now study the effect of the instability on an
astrophysically-motivated population of binary BHs. We
model a formation channel that leads to the alignment of the
BH spins with the orbital angular momentum, but where
co-alignment and counteralignment are equally probable.
This might be the case, for instance, for stellar-mass BHs
brought together by viscous interactions in AGN disks
[30,31,55–60]. Unlike BH binaries formed from binary
stars (where the initial cloud imparts its angular momentum
to both objects favoring coalignment), or systems formed in
highly interacting environments like globular clusters
(where frequent interactions tend to randomize the spin
directions), an accretion disk defines an axisymmetric
environment without a preference for co- or counteralign-
ment. McKernan et al. [60] specifically modeled this
scenario by assuming that 1=4 of the population is found
in either the up-up, down-down, down-up, and up-down
configuration. Naively, one could expect that ∼25% of the
stellar-mass BH binaries formed in AGN disks are subject
to the up-down instability.
As before, we distribute mass ratios using the astro-

physical population inferred from the O1þ O2 GW events
[51], pðqÞ ∝ q6.7 with q ∈ ½0.1; 1�, and sample the dimen-
sionless spins χi uniformly in [0.1, 1]. We simulate 104

binaries in each of the four aligned configurations, and
integrate the precession equations numerically from an
initial orbital separation ri ¼ 1000M to a final separation
rf ¼ 10M. Binaries are initialized by sampling cos θi from

truncated Gaussians with δθ ¼ 20°. If the corresponding
parameters q, χ1 and χ2 are such that rudþ > ri (i.e., if the
source went unstable before the beginning of our integra-
tions), the initial configuration is set to be that of a ΔΦ ¼ 0
resonance, again with a δθ ¼ 20° perturbation.
The resulting distribution of ξ is shown in Fig. 12. The

effective spin ξ is a constant of motion; these curves are
independent of the orbital separation. Up-up (down-down)
binaries tend to pile up at positive (negative) large values of
the effective spins, while both up-down and down-up
sources contribute to a peak at ξ ∼ 0.
Figure 13 shows the joint distributions of cos θ1 and

cos θ2 at the initial (left) and final (right) separations for
each of the four populations. Up-up, down-down, and
down-up binaries largely retain their initial, aligned ori-
entation. Up-down binaries segment into two clear sub-
populations: those which remain stable (lower-right corner
in Fig. 13) and those which become unstable (center of
Fig. 13). The dispersion of the stable up-down binaries
increases compared to the initial distribution owing to a
proportion of these binaries that reach the onset of the
instability but do not reach the formal endpoint by the end
of the evolution.
The subpopulation that becomes unstable presents a

clear trend in the misalignment distribution: binaries pile up

FIG. 12. Distribution of effective spin ξ (often referred to as
χeff ) for the four populations of aligned binaries. Mass ratios q
are sampled according to the power law distribution pðqÞ ∝ q6.7

[51] and dimensionless spins χi are sampled uniformly. We
set q; χ1; χ2 ∈ ½0.1; 1� and introduce an initial misalignment
δθ ¼ 20°. The dotted empty histogram indicates the full pop-
ulation; color shaded histograms differentiate between the four
aligned cases. For the up-down population (red), we further
separate the contributions of two subpopulations: sources that
remain stable during the entire PN inspiral (maxr δS < 0.5,
dashed grey) and sources that undergo the instability (maxr δS >
0.5, dashed black).
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along the cos θ1 ¼ cos θ2 diagonal as predicted by our
Eq. (48). As before, we characterize the two populations
using δS. At r ¼ 1000M, only ∼34% binaries are in the
unstable subpopulation (δS > 0.5): for the vast majority,
these are the cases with rudþ > ri. By the time binaries
reach r ¼ 10M, the unstable fraction goes up to ∼91%

(cf. 35% for the population with mass ratios instead
distributed uniformly in [0.1, 1] presented in Fig. 11).
Compared to the distribution of analytic endpoints of
Fig. 10, the numerical population is skewed toward the
initial configuration cos θ1 ¼ − cos θ2 ¼ 1, again due to a
proportion of binaries that do not fully reach δS ∼ 1.

FIG. 13. Joint distribution of cos θ1 and cos θ2 for binary BHs with initially aligned spins. Sources are evolved numerically from a
separation r ¼ 1000M (left panel) to r ¼ 10M (right panel). Mass ratios q are sampled according to the power law distribution
pðqÞ ∝ q6.7 [51]; dimensionless spins χi are sampled uniformly. We set q; χ1; χ2 ∈ ½0.1; 1�. The populations, each containing 104

binaries, of up-up (blue), down-down (orange) and down-up (green) binaries remain in their initial distributions whereas the up-down
(red) population does not, thus highlighting the precessional instability. By the end of the evolutions the up-down binaries split into two
sub-populations: those which remain stable (bottom right corner) and those which do not (central region). The trend observed in the
unstable subpopulation matches the prediction cos θ1 ¼ cos θ2 of Sec. IVA. An animated version of this figure is available at
www.davidegerosa.com/spinprecession.

FIG. 14. Distribution of mass ratio q, spin magnitudes χi, and instability onset rudþ (left to right) for a set of up-down binaries. Mass
ratios are sampled according to a power law distribution that strongly favors equal masses [51], while spins are sampled uniformly. We
set q; χ1; χ2 ∈ ½0.1; 1�. Red histograms show the full up-down population, while dashed black (grey) histograms indicate systems that do
(not) become unstable. Stability is here defined using maxrδS ≶ 0.5 and integrating from ri ¼ 1000M to rf ¼ 10M. In the right-most
panel, the top axes show the corresponding value of the GW frequency f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=π2r3

p
for systems with total mass M ¼ 10 M⊙ and

M ¼ 106 M⊙.
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Figure 14 shows the distribution of rudþ, q, χ1, and χ2
for the two up-down subpopulations. Only binaries with
either q≲ 0.6 or χi ≲ 0.2 are still stable at the end of
the evolution. These values correspond to rudþ ≲ 50M.
All other sources belong to the unstable subpopula-
tion and approach merger near their predicted endpoints
(maxr δS≳ 0.5). An orbital separation of 50M corresponds
to a GW frequency f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=π2r3

p
of ∼20 Hz for a typical

LIGO source (M ¼ 10 M⊙) and ∼10−4 Hz for a super-
massive BH binary (M ¼ 106 M⊙) detectable by LISA.
A tantalizing possibility would be the development of the

precessional instability while a binary is being observed.
For LIGO, we expect that such a situation is possible for
only a small number of sources. To estimate this fraction,
we produce a distribution of the total mass again according
to Ref. [51] with the distributions of q, χ1, and χ2 as in
Fig. 14. The subpopulation for which the instability
develops in band is then determined by the conditions
fudþ > fLIGO (lower LIGO frequency cutoff), rudþ > 10M
(validity of the PN approximation, which also provides the
upper frequency cutoff) and maxr δS > 0.5 (appreciable
development of the instability). Unsurprisingly, this frac-
tion depends strongly on the lower frequency cutoff: for
fLIGO ¼ 20 Hzð10 HzÞ, only 0.7%ð2.8%Þ of the total
population develops the precessional instability while in
the LIGO band. LISA might provide better prospects, as
some supermassive BH binaries will remain visible for
several precession cycles [61].
The condition q → 0 and χi → 0 identifies the single-

spin limit. In practice, we expect that the vast majority of
up-down sources where two-spin effects are prominent will
become unstable before entering the sensitivity window of
our detectors. Proper modeling of two-spin effects appears
to be crucial. The ξ distributions of the two subpopulations
does not present evident systematic trends (Fig. 12) and
largely reflects that of the full up-down sample. This
suggests that it will be challenging to distinguish stable
and unstable binaries by measuring only one effective spin.

V. CONCLUSIONS

In this paper we reinvestigated the precessional insta-
bility in BH binaries first reported by Gerosa et al. [40]. For
unequal mass systems, there are four distinct configurations
in which the BH spins are aligned or antialigned with
the orbital angular momentum. They are all equilibrium
solutions of the spin precession equations. By perturbing
these configurations we tested their stability properties.
While the up-up, down-down, and down-up configurations
respond with stable oscillations, up-down binaries encoun-
ter an instability at orbital separations between rud�, in
precise agreement with the results of Ref. [40]. The
instability induces precessional motion by which the two
BH spins become largely misaligned with the orbital
angular momentum.
We verified the occurrence of the up-down instability

with numerical PN evolutions. By varying the initial

misalignment of the BH spins, we found that after evolving
through the instability binaries tend to cluster at a well-
defined endpoint configuration, rather than dispersing in
the available parameter space as might usually be expected
of an instability.
The evolution toward this endpoint can be characterized

in terms of the so-called spin-orbit resonances [42]. Within
the framework of 2PN spin precession, we developed a
semianalytic scheme to locate and identify these resonan-
ces, and proved that a binary initially in such a configu-
ration remains so. We derived analytic solutions in the
zero-separation limit and identified the asymptotic con-
figuration of both resonant families, ΔΦ ¼ 0 and ΔΦ ¼ π.
In particular, for separations r > rudþ the up-down

configuration is a ΔΦ ¼ 0 resonance, but between rudþ >
r > rud− this is no longer the case. This is precisely the
cause of the precessional instability: a binary initially
configured arbitrarily close to up-down is also arbitrarily
close to a resonance and thus tends to remain resonant.
Upon reaching the instability onset at rudþ, when up-down
is no longer a resonant solution, the binary moves away
from this initial alignment via precession to the new
ΔΦ ¼ 0 resonance. The asymptotic PN endpoints of
binaries initialized close to up-down can therefore be
found analytically. Specifically, the up-down endpoint is
characterized by Ŝ1 ¼ Ŝ2 and Ŝ1 · L̂¼ Ŝ2 · L̂¼ðχ1−qχ2Þ=
ðχ1þqχ2Þ.
In reality, up-down binaries will not become unstable (at

least in the PN regime) if rudþ < 10M and may not fully
reach their endpoint configurations if rudþ is too small. We
find that the instability develops rather quickly. The vast
majority of binaries with rudþ ≳ 50M fully reach the
predicted endpoint by the end of the evolution. More
specifically, the instability develops over a characteristic
separation of δr ≃ 25M.
Because the stability-to-endpoint transition is so quick,

one can further approximate the occurrence of the up-down
instability as a step function. Let rGW denote the separation
at which a BH binary enters the sensitivity window of a
given detector (∼10 Hz for the case of LIGO/Virgo and
∼10−3 Hz for LISA). Broadly speaking, we predict that
binaries formed in the up-down configuration will be
observable

(i) still in the up-down configuration if rudþ ≲ rGW;
(ii) with Ŝ1 ≃ Ŝ2 and Ŝ1 · L̂ ≃ Ŝ2 · L̂ if rudþ ≳ rGW.
Our findings are particularly relevant for BH binary

formation channels where astrophysical mechanisms tend
to align the spins without preference for the alignment
direction. This might be the case for stellar-mass BHs
embedded in AGN accretion disks [59,60]: such a pop-
ulation of BHs will consist of up-up, down-down, down-up,
and up-down binaries in equal proportion. Over their
inspirals, the distributions of the spin directions for the
former three configurations remains the same. Up-down
binaries, on the other hand, split into two sub-populations:
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those that remain stable and those that become unstable.
The latter approach merger with spins coaligned with each
other and equally misaligned with the orbital angular
momentum, as predicted by our analytic calculation.
The analysis presented in this paper is limited to the PN

regime of BH binary inspirals (r≳ 10M). Numerical
relativity simulations are necessary to fully test the insta-
bility endpoint closer to merger. Injections of up-down
binaries in GW parameter-estimation tools will allow us to
forecast the distinguishability of these sources with current
and future interferometers. We foresee that the inclusion of
two-spin effects in waveform templates will be crucial to
properly characterize up-down sources. We hope that our
PN predictions will spark future work in both these
directions.
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APPENDIX A: NEAR-ALIGNMENT EXPANSION

In this Appendix we derive again the threshold of the
precessional instability in the small misalignment expan-
sion using the formalism of Ref. [62].
Given an arbitrary vector v and a direction ẑ, one can

decompose v into a component vk ¼ ðv · ẑÞẑ parallel to ẑ
and a component v⊥ ¼ v − ðv · ẑÞẑ perpendicular to ẑ, so
that v ¼ vk þ v⊥. If v is nearly aligned with ẑ then the
angle ε between them is small and v · ẑ¼ vcosε¼ vþ
Oðε2Þ. Similarly, if v is nearly counteraligned with ẑ
then we may use the small parameter ε to write v · ẑ ¼
v cos ðπ þ εÞ ¼ −v cos ε ¼ −vþOðε2Þ. Defining the
parameter α ¼ �1 to distinguish between coalignment
(þ1) and counteralignment (−1) of the vector v with
respect to ẑ, we have in either case that vk ≈ αvẑ. The

perpendicular component satisfies jv⊥j ¼ vj sin εj ¼ vjεj þ
Oðε3Þ, and hence jv⊥j ≪ jvkj.
We apply this procedure to the spins S1 ¼ S1k þ S1⊥

and S2 ¼ S2k þ S2⊥ of the two BHs and the orbital
angular momentum L ¼ Lk þL⊥ of the binary, using
α1, α2 and αL to distinguish between coalignment and
counteralignment. We neglect radiation reaction and
rewrite the 2PN orbit-averaged equations (4a)–(4c) to
leading order in ε:

dS1

dt
¼ 1

2r3
ðβ1α1S1L⊥−β1αLLS1⊥þα1S1S2⊥−α2S2S1⊥Þ×ẑ;

ðA1aÞ

dS2

dt
¼ 1

2r3
ðβ2α2S2L⊥−β2αLLS2⊥þα2S2S1⊥−α1S1S2⊥Þ×ẑ;

ðA1bÞ

dL
dt

¼ 1

2r3
ðβ1αLLS1⊥ − β1α1S1L⊥ þ β2αLLS2⊥

− β2α2S2L⊥Þ × ẑ; ðA1cÞ

where

β1 ¼ 4þ 3q −
3αL
L

ðqα1S1 þ α2S2Þ; ðA2aÞ

β2 ¼ 4þ 3

q
−
3αL
L

�
α1S1 þ

α2S2
q

�
: ðA2bÞ

Completing the Cartesian frame with two additional basis
vectors x̂ and ŷ, one can write L⊥ ¼ Lxx̂þ Lyŷ, where
Lx ¼ L⊥ · x̂ and Ly ¼ L⊥ · ŷ, and similarly for S1⊥ and
S2⊥. Defining the vectors vx ¼ ðS1x; S2x; LxÞ, vy ¼
ðS1y; S2y; LyÞ and vz¼ðS1z;S2z;LzÞ, Eqs. (A1a)–(A1c) can
now be written as

dvx
dt

¼ −Wvy;
dvy
dt

¼ Wvx;
dvz
dt

¼ 0; ðA3Þ

where W is the matrix

W ¼ 1

2r3

0
BB@

β1αLLþ α2S2 −α1S1 −β1α1S1
−α2S2 β2αLLþ α1S1 −β2α2S2
−β1αLL −β2αLL β1α1S1 þ β2α2S2

1
CCA: ðA4Þ

Given the conservation of ξ, J, S1 and S2 over the PN
evolution of the binary and since we are neglecting
radiation reaction (L is conserved), then dW=dt ¼ 0 and

we can decouple the equations for vx and vy by taking
another time derivative. This results in the following
harmonic oscillator equations:
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d2vx
dt2

þW2vx ¼ 0;
d2vy
dt2

þW2vy ¼ 0: ðA5Þ

The oscillation frequencies are given by the eigenvalues of
the matrix W2, which are equal to the square of the
eigenvalues of W. From Eq. (A4), the latter are given by
w0 ¼ 0 and

w� ¼ 1

4r3
ð1þ β1Þα1S1 þ ð1þ β2Þα2S2 þ ðβ1 þ β2ÞαLL

� f½ð1þ β1Þα1S1 þ ð1þ β2Þα2S2 þ ðβ1 þ β2ÞαLL�2
− 4ðβ1α1S1 þ β2α2S2 þ β1β2αLLÞ
× ðα1S1 þ α2S2 þ αLLÞg1=2: ðA6Þ

When the w� are real (complex), the configuration
described by the parameters α1, α2 and αL is stable
(unstable) to precession. This behavior is determined by
the argument of the square root in Eq. (A6). We therefore
seek the roots of this discriminant. Using the equalities
α21 ¼ α22 ¼ α2L ¼ 1 and substituting the expressions for βi,
we find that the roots of the discriminant are

L0 ¼ αL
qα1S1 þ α2S2

1þ q
; ðA7aÞ

L� ¼ qαLα1S1 − αLα2S2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qα1α2S1S2

p
1 − q

: ðA7bÞ

The root L0 is the repeated root which we have already
identified as unphysical due to a corresponding value of the
binary separation r0 ≤ M [cf. Eq. (19)]. As expected, in L�
only the relative orientations of S1k, S2k and Lk matter and
consequently the parameters α1, α2 and αL appear in pairs.
As in Sec. II B, to ensure that L� is real and non-negative
we require α1αL ¼ −α2αL ¼ −α1α2 ¼ 1, which corre-
sponds to the up-down configuration. We thus recover

the binary separations that determine the threshold of the
up-down instability, cf. Eq. (21) and Ref. [40]:

rud� ¼ ð ffiffiffiffiffi
χ1

p � ffiffiffiffiffiffiffi
qχ2

p Þ4
ð1 − qÞ2 M: ðA8Þ

APPENDIX B: COEFFICIENTS
OF ΣðS2Þ AND ΔðJ2Þ

For completeness, in this Appendix we report some of
the expressions that were omitted from the main body of
the paper.
The coefficients σi of the third-degree polynomial ΣðS2Þ

given in Eq. (28) are

σ6 ¼ qð1þ qÞ2; ðB1aÞ

σ4 ¼ ð1þ qÞ2½−2J2qþ L2ð1þ q2Þ
þ 2LM2ξq − ð1 − qÞðqS21 − S22Þ�; ðB1bÞ

σ2 ¼ 2ð1þ qÞ2ð1 − qÞ½J2ðqS21 − S22Þ
− L2ðS21 − qS22Þ� þ qð1þ qÞ2ðJ2 − L2Þ2
− 2LM2ξqð1þ qÞ½ð1þ qÞðJ2 − L2Þ
þ ð1 − qÞðS21 − S22Þ� þ 4L2M4ξ2q2; ðB1cÞ

σ0 ¼ ð1 − q2Þ½L2ð1 − q2ÞðS21 − S22Þ2
− ð1þ qÞðqS21 − S2Þ2ðJ2 − L2Þ2
þ 2LM2ξqðS21 − S22ÞðJ2 − L2Þ�: ðB1dÞ

These expressions were also reported in Eq. (16)
of Ref. [39].
The coefficients δi of the discriminant ΔðJ2Þ given in

Eq. (30) are

δ10 ¼ −4L2ðq − 1Þ2q3ðqþ 1Þ8; ðB2aÞ

δ8 ¼ L2ðq − 1Þ2q2ðqþ 1Þ6½L2ðq2 þ 18qþ 1Þðqþ 1Þ2 þ 20LM2ξqðqþ 1Þ2 þ 4q2ðM4ξ2 þ 7S21 þ 7S22Þ − 12q4S21

− 12S22 − 4q3ðS21 − 5S22Þ þ 4qð5S21 − S22Þ�; ðB2bÞ

δ6 ¼ −4L2ðq − 1Þ2qðqþ 1Þ6fL4ðqþ 1Þ2ðq2 þ 8qþ 1Þqþ L3M2ξðqþ 1Þ2ðq2 þ 18qþ 1Þqþ L2½q4ð8M4ξ2 þ 6S21

þ 15S22Þ þ q3ð28M4ξ2 þ 26S21 þ 26S22Þ þ q2ð8M4ξ2 þ 15S21 þ 6S22Þ − 5q6S21 þ q5ðS22 − 11S21Þ þ qðS21 − 11S22Þ
− 5S22� þ LM2ξq½q2ð4M4ξ2 þ 17S21 þ 17S22Þ − q4S21 − 4q3ðS21 − 5S22Þ þ 4qð5S21 − S22Þ − S22�
− q4½2S21ðM4ξ2 þ S22Þ þ 11S41 − 10S42� þ 4q3½S21ðM4ξ2 þ 5S22Þ þM4ξ2S22 þ 2S41 þ 2S42� þ q2ð−2M4ξ2S22

þ 10S41 − 2S21S
2
2 − 11S42Þ3q6S41 − 6q5ðS41 þ 2S21S

2
2Þ − 6qð2S21S22 þ S42Þ þ 3S42g; ðB2cÞ
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δ4 ¼ 2L2ðqþ 1Þ2ðq2 − 1Þ2fq2ðqþ 1Þ4ð3q2 þ 14qþ 3ÞL6 þ 6M2q2ðqþ 1Þ4ðq2 þ 8qþ 1ÞξL5

− 2ðqþ 1Þ2½S21q8 þ 13S21q
7 þ ð−ξ2M4 þ 14S21 − 2S22Þq6 − ð26ξ2M4 þ 20S21 þ 17S22Þq5

− ð72ξ2M4 þ 37S21 þ 37S22Þq4 − ð26ξ2M4 þ 17S21 þ 20S22Þq3 − ðξ2M4 þ 2S21 − 14S22Þq2
þ 13S22qþ S22�L4 − 2M2qðqþ 1Þ2ξ½4S21q6 þ ð22S21 − 3S22Þq5 − 2ð2ξ2M4 þ 9S21 þ 17S22Þq4
− ð44ξ2M4 þ 67S21 þ 67S22Þq3 − 2ð2ξ2M4 þ 17S21 þ 9S22Þq2 þ ð22S22 − 3S21Þqþ 4S22�L3

þ f−4S41q10 − 10ð2S41 þ 3S22S
2
1Þq9 − ½53S41 þ ð4ξ2M4 þ 74S22ÞS21 − 3S42�q8 þ 4½12S22ξ2M4 − 17S41 þ 9S42

þ S21ð6M4ξ2 − 10S22Þ�q7 þ ½8ξ4M8 þ 128S22ξ
2M4 þ S41 þ 101S42 þ S21ð92ξ2M4 þ 26S22Þ�q6

þ 4½8ξ4M8 þ 36S22ξ
2M4 þ 25S41 þ 25S42 þ S21ð36ξ2M4 þ 11S22Þ�q5 þ ½8ξ4M8 þ 92S22ξ

2M4 þ 101S41 þ S42

þ 2S21ð64ξ2M4 þ 13S22Þ�q4 þ 4½6S22ξ2M4 þ 9S41 − 17S42 − 2S21ð5S22 − 6M4ξ2Þ�q3 þ ð−4S22ξ2M4 þ 3S41 − 53S42

− 74S21S
2
2Þq2 − 10ð2S42 þ 3S21S

2
2Þq − 4S42gL2 − 2M2qðqþ 1Þξf4S41q7 þ ð3S21S22 − 11S41Þq6 þ ½5S41 þ ð9S22

− 4M4ξ2ÞS21 − 30S42�q5 þ ½29S41 þ 4ðξ2M4 þ 3S22ÞS21 − 3ð4S22ξ2M4 þ 7S42Þ�q4 þ ½4S22ξ2M4 − 21S41 þ 29S42

þ 12S21ðS22 −M4ξ2Þ�q3 þ ð−4S22ξ2M4 − 30S41 þ 5S42 þ 9S21S
2
2Þq2 þ ð3S21S22 − 11S42Þqþ 4S42gL − 2ðqþ 1Þ2

× fS61q8 − ð7S61 þ 9S22S
4
1Þq7 þ ½S61 þ ð9S22 −M4ξ2ÞS41 þ 18S42S

2
1�q6 þ ½17S61 þ ð6ξ2M4 þ 9S22ÞS41 − 10S62

þ 6M4S22ξ
2S21�q5 − ½2S61 þ 3ð2ξ2M4 þ 9S22ÞS41 þ ð10S22ξ2M4 þ 27S42ÞS21 þ 2S42ð3ξ2M4 þ S22Þ�q4 þ ½−10S61

þ ð6S22ξ2M4 þ 9S42ÞS21 þ 17S62 þ 6M4S42ξ
2�q3 þ ðS62 þ 9S21S

4
2 −M4ξ2S42 þ 18S41S

2
2Þq2 − ð7S62 þ 9S21S

4
2Þqþ S62gg;

ðB2dÞ

δ2 ¼ −4L2ðqþ 1Þ2ðq2 − 1Þ2fq2ðqþ 1Þ4ðq2 þ 3qþ 1ÞL8 þM2q2ðqþ 1Þ4ð3q2 þ 14qþ 3ÞξL7 − ðqþ 1Þ2½2S21q8
þ 11S21q

7 þ ð−2ξ2M4 þ 7S21 − S22Þq6 − ð28ξ2M4 þ 18S21 þ 9S22Þq5 − 8ð8ξ2M4 þ 3S21 þ 3S22Þq4 − ð28ξ2M4

þ 9S21 þ 18S22Þq3 − ð2ξ2M4 þ S21 − 7S22Þq2 þ 11S22qþ 2S22�L6 −M2qðqþ 1Þ2ξ½12S21q6 þ ð29S21 − 2S22Þq5
− 4ð3ξ2M4 þ 10S21 þ 5S22Þq4 − ð68ξ2M4 þ 75S21 þ 75S22Þq3 − 4ð3ξ2M4 þ 5S21 þ 10S22Þq2 þ ð29S22 − 2S21Þq
þ 12S22�L5 þ f−2S21ð3S21 þ S22Þq10 − ð29S41 þ 6S22S

2
1Þq9 þ ½2S22ξ2M4 − 45S41 þ S42 − 2S21ð9ξ2M4 þ 16S22Þ�q8

− 2½4S41 þ ð3ξ2M4 þ 29S22ÞS21 − 3ð2S22ξ2M4 þ S42Þ�q7 þ ½24ξ4M8 þ 98S22ξ
2M4 þ 49S41 þ 25S42 þ 2S21ð61ξ2M4

þ 5S22Þ�q6 þ ½80ξ4M8 þ 198S22ξ
2M4 þ 55S41 þ 55S42 þ 2S21ð99ξ2M4 þ 40S22Þ�q5 þ ½24ξ4M8 þ 122S22ξ

2M4

þ 25S41 þ 49S42 þ 2S21ð49ξ2M4 þ 5S22Þ�q4 þ 2½−3S22ξ2M4 þ 3S41 − 4S42 þ S21ð6M4ξ2 − 29S22Þ�q3 þ ½S41
þ ð2M4ξ2 − 32S22ÞS21 − 9ð2S22ξ2M4 þ 5S42Þ�q2 − ð29S42 þ 6S21S

2
2Þq − 2S22ðS21 þ 3S22ÞgL4 þM2qξf−8S21ð3S21

þ S22Þq8 þ ð−51S41 − 8S22S
2
1 þ 3S42Þq7 þ ½8S22ξ2M4 − 2S41 þ 14S42 þ 4S21ð2ξ2M4 þ S22Þ�q6 þ ½12S22ξ2M4

þ 65S41 þ 31S42 þ S21ð76M4ξ2 − 40S22Þ�q5 þ 4½4ξ4M8 þ 18S22ξ
2M4 þ 15S41 þ 15S42 þ S21ð18M4ξ2 − 22S22Þ�q4

þ ½76S22ξ2M4 þ 31S41 þ 65S42 þ S21ð12M4ξ2 − 40S22Þ�q3 þ 2½4S22ξ2M4 þ 7S41 − S42 þ 2S21ð2ξ2M4 þ S22Þ�q2
þ ð3S41 − 8S22S

2
1 − 51S42Þq − 8S22ðS21 þ 3S22ÞgL3 − fð6S61 þ 4S22S

4
1Þq10 þ ð13S61 þ 8S22S

4
1 þ 15S42S

2
1Þq9 þ ½S61

þ ð18M4ξ2 − 41S22ÞS41 þ ð4S22ξ2M4 þ 11S42ÞS21 − S62�q8 − ½9S61 þ 3ð8ξ2M4 þ 31S22ÞS41 þ ð12S22ξ2M4 þ 35S42Þ
× S21 þ 7S62 þ 24M4S42ξ

2�q7 þ ½−8S22ξ4M8 þ 4S42ξ
2M4 þ 3S61 − 9S62 þ S41ð9S22 − 50M4ξ2Þ þ S21ð−24ξ4M8

þ 24S22ξ
2M4 þ 17S42Þ�q6 þ ½8S22ξ4M8 þ 20S42ξ

2M4 þ 3S61 þ 3S62 þ 5S41ð4ξ2M4 þ 21S22Þ þ S21ð8ξ4M8

þ 80S22ξ
2M4 þ 105S42Þ�q5 þ ½−24S22ξ4M8 − 50S42ξ

2M4 − 9S61 þ 3S62 þ S41ð4ξ2M4 þ 17S22Þ þ S21ð−8ξ4M8

þ 24S22ξ
2M4 þ 9S42Þ�q4 − ½7S61 þ ð24ξ2M4 þ 35S22ÞS41 þ 3ð4S22ξ2M4 þ 31S42ÞS21 þ 9S62 þ 24M4S42ξ

2�q3
þ ½−S61 þ 11S22S

4
1 þ ð4M4S22ξ

2 − 41S42ÞS21 þ S62 þ 18M4S42ξ
2�q2 þ ð13S62 þ 8S21S

4
2 þ 15S41S

2
2Þqþ 6S62 þ 4S21S

4
2gL2
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−M2qðqþ 1Þξf4ð3S61 þ 2S22S
4
1Þq7 þ ð−17S61 − 6S22S

4
1 þ 3S42S

2
1Þq6 − ½21S61 þ 2ð6ξ2M4 þ 11S22Þ

× S41 þ ð8M4S22ξ
2 − 3S42ÞS21 þ 20S62�q5 þ ½37S61 þ ð20ξ2M4 þ 3S22ÞS41 þ ð12S22ξ2M4 þ 11S42ÞS21 þ 9S62

− 12M4S42ξ
2�q4 þ ½9S61 þ ð11S22 − 12M4ξ2ÞS41 þ 3ð4S22ξ2M4 þ S42ÞS21 þ 37S62 þ 20M4S42ξ

2�q3 − ½20S61
− 3S22S

4
1 þ ð8S22ξ2M4 þ 22S42ÞS21 þ 3S42ð4ξ2M4 þ 7S22Þ�q2 þ ð−17S62 − 6S21S

4
2 þ 3S41S

2
2Þqþ 12S62 þ 8S21S

4
2gL

− ðq − 1Þðqþ 1Þ2ðqS21 − S22Þf2S41ðS21 þ S22Þq6 þ ð−3S61 þ 2S22S
4
1 − 7S42S

2
1Þq5 − ½7S61 þ ð2M4ξ2 − 5S22ÞS41

þ ð2S22ξ2M4 þ 7S42ÞS21 − 5S62�q4 þ ½3S61 þ ð4ξ2M4 þ 5S22ÞS41 þ 5S42S
2
1 þ 3S62 þ 4M4S42ξ

2�q3 þ ½5S61 − 7S22S
4
1

þ ð5S42 − 2M4S22ξ
2ÞS21 − 7S62 − 2M4S42ξ

2�q2 þ ð−3S62 þ 2S21S
4
2 − 7S41S

2
2Þqþ 2S42ðS21 þ S22Þgg; ðB2eÞ

δ0 ¼ L2ðq − 1Þ2ðqþ 1Þ2½L2ðqþ 1Þ2 þ 2LM2ξqþ ðq2 − 1ÞðS21 − S22Þ�2fL6q2ðqþ 1Þ4 þ 4L5M2ξq2ðqþ 1Þ4
− 2L4ðqþ 1Þ2½−q4ð2M4ξ2 þ 3S21 þ S22Þ − 4q3ð2M4ξ2 þ S21 þ S22Þ − q2ð2M4ξ2 þ S21 þ 3S22Þ þ 2q6S21 þ 2q5S21

þ 2qS22 þ 2S22� þ 4L3M2ξqðqþ 1Þ2½q2ð4M4ξ2 þ 7S21 þ 7S22Þ − 4q4S21 þ q3ð2S21 þ S22Þ þ qðS21 þ 2S22Þ − 4S22�
þ L2fq6½−2S21ð4M4ξ2 þ 21S22Þ − 15S41 þ S42� þ 4q5½S21ð4M4ξ2 þ 3S22Þ þ 8M4ξ2S22 þ 5S41 þ 3S42�
þ 4q3½S21ð8M4ξ2 þ 3S22Þ þ 4M4ξ2S22 þ 3S41 þ 5S42� þ q2ð−8M4ξ2S22 þ S41 − 42S21S

2
2 − 15S42Þ þ 2q4½8M8ξ4

þ S21ð28M4ξ2 þ 34S22Þ þ 28M4ξ2S22 þ 15S41 þ 15S42� − 8q8S41 − 4q7ð6S41 þ 5S21S
2
2Þ − 4qð5S21S22 þ 6S42Þ − 8S42g

− 4LM2ξqðqþ 1Þf−q3½S21ð4M4ξ2 − 3S22Þ þ 6S41 þ 5S42� − q2ð4M4ξ2S22 þ 5S41 − 3S21S
2
2 þ 6S42Þ þ 4q5S41

þ q4S21ð3S21 þ S22Þ þ qS22ðS21 þ 3S22Þ þ 4S42g − 4ðqþ 1Þ2ðS22 − qS21Þ2½−q2ðM4ξ2 þ S21 þ S22Þ þ q4S21

þ q3ðS21 − S22Þ þ qðS22 − S21Þ þ S22�g: ðB2fÞ
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