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Orbital shadowing, ω-limit sets and minimality

Joel Mitchell

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK

Abstract

Let X be a compact Hausdorff space, with uniformity U , and let f : X → X be a continuous function. For
D ∈ U , a D-pseudo-orbit is a sequence (xi) for which (f(xi), xi+1) ∈ D for all indices i. In this paper we
show that pseudo-orbits trap ω-limit sets in a neighbourhood of prescribed accuracy after a uniform time
period. A consequence of this is a generalisation of a result of Pilyugin et al : every system has the second
weak shadowing property. By way of further applications we give a characterisation of minimal systems in
terms of pseudo-orbits and show that every minimal system exhibits the strong orbital shadowing property.

Keywords: Orbital shadowing, ω-limit set, Minimal, Pseudo-orbit, Dynamical system
2010 MSC: 37B99, 37C50, 54H20

Let f : X → X be a continuous map on a compact metric space X. We say (X, f) is a (discrete)
dynamical system. A sequence (xi) in X is called a δ-pseudo-orbit provided d(f(xi), xi+1) < δ for each i.
Pseudo-orbits are clearly relevant when calculating an orbit numerically, as rounding errors mean a computed
orbit will in fact be a pseudo-orbit. The (finite or infinite) sequence (yi) in X is said to ε-shadow the (xi)
provided d(yi, xi) < ε for all indices i. First used implicitly by Bowen [3], a system has shadowing, or the
pseudo-orbit tracing property, if pseudo-orbits are shadowed by true orbits. Since then various other notions
of shadowing have been studied, for example, ergodic, thick and Ramsey shadowing [4, 5, 8, 10, 21], limit
shadowing [2, 16, 23], s-limit shadowing [2, 16, 19], orbital shadowing [13, 22, 23], and inverse shadowing
[7, 14, 18].

The orbital shadowing property was introduced in [22] where the authors studied its relationship to
classical stability properties, such as structural stability and Ω-stability. Informally, a system has orbital
shadowing if the closure of the set of points in any pseudo-orbit is close to an orbit closure of a point (see
below of precise definitions). Orbital shadowing has since been studied by various authors (e.g [13, 15, 23]).
A stronger type of orbital shadowing was introduced in [13], aptly named strong orbital shadowing, as part
of the authors’ quest to characterise when the set of ω-limit sets of a system coincides with the set of closed
internally chain transitive sets.

In this paper we prove (Theorem 2.3) that every compact metric dynamical system enjoys a weak form
of shadowing, specifically: For any ε > 0 there exist n ∈ N and δ > 0 such that given any δ-pseudo-orbit
(xi)i≥0 there exists z ∈ X such that

Bε ({xi}ni=0) ⊇ ω(z).

Thus initial segments of pseudo-orbits trap ω-limit sets, and consequently full orbits, in their neighbourhood.
As an application of this result we show that compact minimal systems have the strong orbital shadowing
property as introduced in [13]. Our methodology allows us to give a characterisation of minimal systems in
terms of pseudo-orbits (Theorem 2.5). Along the way we generalise a result of Pilyugin et al [22] by showing
that every compact Hausdorff system has the second weak shadowing property.

In order to keep our results as general as possible we take the phase space throughout to be compact
Hausdorff but not necessarily metric; this is a setting which has attracted an increasing amount of attention
in topological dynamics (e.g. [1, 6, 11, 12, 15, 17, 20, 25]). In particular this means all of our results hold
in a compact metric setting.
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1. Preliminaries

1.1. Dynamical systems

A dynamical system is a pair (X, f) consisting of a compact Hausdorff space X and a continuous function
f : X → X. We say that the orbit of x under f is the set of points {x, f(x), f2(x), . . .}; we denote this set
by Orb(x). For a point x ∈ X, we define the ω-limit set of x under f , denoted ω(x), to be the set of limit
points of its orbit sequence. Formally

ω(x) =
⋂
N∈N
{fn(x) | n > N}.

It follows that Orb(x) = Orb(x) ∪ ω(x). Note also that since X is compact ω(x) 6= ∅ for any x ∈ X by
Cantor’s intersection theorem.

For a dynamical system (X, f), a subset A ⊆ X is said to be positively invariant (under f) if f(A) ⊆
A. The system is minimal if there are no proper, nonempty, closed, positively-invariant subsets of X.
Equivalently, a system is minimal if ω(x) = X for all x ∈ X.

Definition 1.1. Let X be a metric space. The system (X, f) has the orbital shadowing property if for all
ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit (xi)i≥0, there exists a point z such that

dH

(
{xi}i≥0, {f i(z)}i≥0

)
< ε.

Here dH denotes the Hausdorff metric, defined on the compact subsets of X, which is given by:

dH(A,A′) = inf{ε > 0 : A ⊆ Bε(A
′) and A′ ⊆ Bε(A)}.

The following weakening of orbital shadowing was introduced in [22].

Definition 1.2. Let X be a metric space. The system (X, f) has the second weak shadowing property if
for all ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit (xi)i≥0, there exists a point z such that

Orb(z) ⊆ Bε ({xi}i≥0) .

The following strengthening of orbital shadowing was introduced in [13]. The authors demonstrate it to be
distinct.

Definition 1.3. Let X be a metric space. The system (X, f) has the strong orbital shadowing property if
for all ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit (xi)i≥0, there exists a point z such that,
for all N ∈ N0,

dH

(
{xN+i}i≥0, {fN+i(z)}i≥0

)
< ε.

1.2. Uniform spaces

In this subsection we give a brief description of a uniform space. A more thorough introduction to the
topic can be found in [9, Chapter 8].

Let X be a nonempty set and A ⊆ X × X. Let A−1 = {(y, x) | (x, y) ∈ A}. The set A is said to be
symmetric if A = A−1. For any A1, A2 ⊆ X ×X we define the composite A1 ◦A2 as

A1 ◦A2 = {(x, z) | ∃y ∈ X : (x, y) ∈ A2, (y, z) ∈ A1}.

For any n ∈ N and A ⊆ X ×X we denote by nA the n-fold composition of A with itself, i.e.

nA = A ◦A ◦A · · ·A︸ ︷︷ ︸
n times

.

The diagonal of X × X is the set ∆ = {(x, x) | x ∈ X}. A subset A ⊆ X × X is called an entourage if
A ⊇ ∆.

A uniformity U on X is a collection of entourages such that
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a. E1, E2 ∈ U =⇒ E1 ∩ E2 ∈ U .

b. E ∈ U , E ⊆ D =⇒ D ∈ U .

c. E ∈ U =⇒ D ◦D ⊆ E for some D ∈ U .

d. E ∈ U =⇒ D−1 ⊆ E for some D ∈ U .

We call the pair (X,U ) a uniform space. We say U is separating if
⋂

E∈U E = ∆. A subcollection V of U
is said to be a base for U if for any E ∈ U there exists D ∈ V such that D ⊆ E. Note that the collection
of symmetric entourages of a uniformity form a base for said uniformity.

For an entourage E ∈ U and a point x ∈ X we define the set BE(x) = {y ∈ X | (x, y) ∈ E}; we refer
to this set as the E-ball about x. This naturally extends to a subset A ⊆ X; BE(A) =

⋃
x∈ABE(x); in this

case we refer to the set BE(A) as the E-ball about A. We emphasise that (see [24, Section 35.6]):

• For all x ∈ X, the collection Bx := {BE(x) | E ∈ U } is a neighbourhood base at x, making X a
topological space.

• The topology is Hausdorff if and only if U is separating.

For a compact Hausdorff space X there is a unique uniformity U which induces the topology (see [9,
Chapter 8]).

We may use uniformities to give appropriate definitions of orbital shadowing, second weak shadowing
and strong orbital shadowing in the more general setting of uniform spaces. First of all, given an entourage
D ∈ U , a sequence (xi)i≥0 in X is called a D-pseudo-orbit if (f(xi), xi+1) ∈ D for all i ≥ 0.

Definition 1.4. Let X be a uniform space. The system (X, f) has the orbital shadowing property if for all
E ∈ U , there exists D ∈ U such that for any D-pseudo-orbit (xi)i≥0, there exists a point z such that

Orb(z) ⊆ BE ({xi}i≥0)

and
{xi}i≥0 ⊆ BE (Orb(z)) .

Definition 1.5. Let X be a uniform space. The system (X, f) has the second weak shadowing property if
for all E ∈ U , there exists D ∈ U such that for any D-pseudo-orbit (xi)i≥0, there exists a point z such that

Orb(z) ⊆ BE ({xi}i≥0) .

Definition 1.6. Let X be a uniform space. The system (X, f) has the strong orbital shadowing property
if for all E ∈ U , there exists D ∈ U such that for any D-pseudo-orbit (xi)i≥0, there exists a point z such
that, for all N ∈ N0,

{fN+i(z)}i≥0 ⊆ BE ({xN+i}i≥0)

and
{xN+i}i≥0 ⊆ BE

(
{fN+i(z)}i≥0

)
.

When X is a compact metric space these definitions coincide with the previously given metric versions.
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2. Main results

Henceforth X is a compact Hausdorff space and the unique uniformity associated with X will be denoted
by U . Since the collection of symmetric entourages of U forms a base for U , we can assume, without loss
of generality, that all entourages we refer to are symmetric. This will be a standing assumption throughout.

Lemma 2.1. Let (X, f) be a dynamical system where X is a compact Hausdorff space. Then (X, f) satisfies
the following:

∀E ∈ U ∀x ∈ X ∃n ∈ N ∃z ∈ X s.t.
n⋃

i=1

BE

(
f i(x)

)
⊇ ω(z).

Proof. Take E ∈ U and pick x ∈ X. Let E0 ∈ U be such that 2E0 ⊆ E. Take a finite subcover of the open
cover {int(BE0

(y)) | y ∈ ω(x)} of ω(x). For each element of this subcover there exists m such that fm(x)
lies inside it. Pick one such m for each element and then let n be the largest. The result follows by taking
z = x.

Lemma 2.2. Let (X, f) be a dynamical system where X is a compact Hausdorff space. Then (X, f) satisfies
the following:

∀E ∈ U ∃n ∈ N s.t. ∀x ∈ X ∃z ∈ X s.t.
n⋃

i=1

BE

(
f i(x)

)
⊇ ω(z).

Proof. Fix E ∈ U . Let E0 ∈ U be such that 2E0 ⊆ E. For each x ∈ X let nx ∈ N be as in the condition in
Lemma 2.1 for E0 and let Dx ∈ U be such that, for any y ∈ X, if (x, y) ∈ Dx then, for each i ∈ {0, . . . , nx},
(f i(x), f i(y)) ∈ E0. Without loss of generality, the collection {BDx

(x) | x ∈ X} forms an open cover. Let{
BDxi

(xi) | i ∈ {1, . . . , k}
}
,

be a finite subcover. Take n = maxi∈{1,...,k} nxi . Pick x ∈ X arbitrarily. There exists l ∈ {1, . . . , k} such
that x ∈ BDxl

(xl), which in turn implies (f i(x), f i(xl)) ∈ E0 for each i ∈ {0, . . . , nxl
}. By Lemma 2.1 there

exists z ∈ X such that
nl⋃
i=1

BE0

(
f i(xl)

)
⊇ ω(z).

Since 2E0 ⊆ E, by entourage composition combined with the fact that nl ≤ n, it follows that

n⋃
i=1

BE

(
f i(x)

)
⊇ ω(z).

Theorem 2.3. Let (X, f) be a dynamical system where X is a compact Hausdorff space. Then for any
E ∈ U there exist n ∈ N and D ∈ U such that given any D-pseudo-orbit (xi)i≥0 there exists z ∈ X such
that

BE ({xi}ni=0) ⊇ Orb(z).

In particular,
BE ({xi}i≥0) ⊇ Orb(z).
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Proof. Let E ∈ U be given and let E0 ∈ U be such that 2E0 ⊆ E. Take n ∈ N as in the condition in
Lemma 2.2 with respect to E0. By uniform continuity we can choose D ∈ U such that every D-pseudo-
orbit E0-shadows the first n iterates of its origin. Explicitly: Let D1 ⊆ E0 be an entourage such that,
for any y, z ∈ X, if (y, z) ∈ D1 then (f(y), f(z)) ∈ E0. For each i ∈ {2, . . . , n} let Di ∈ U be such that
2Di ⊆ f−1(Di−1) ∩Di−1.

Now take D := Dn. Suppose (xi)i≥0 is a D-pseudo-orbit. Then (f i(x0), xi) ∈ E0 for all i ∈ {0, . . . , n}.
By Lemma 2.2 there exists y ∈ X such that

n⋃
i=1

BE0

(
f i(x0)

)
⊇ ω(y).

Since 2E0 ⊆ E and, for each i ∈ {0, . . . , n}, (f i(x0), xi) ∈ E0 it follows by entourage composition that

BE ({xi}ni=0) ⊇ ω(y).

Since X is compact, ω(y) 6= ∅. Pick z ∈ ω(y). Because ω-limit sets are closed and positively invariant
Orb(z) ⊆ ω(y). The result follows.

Notice that we could replace Orb(z) with either ω(z) or Orb(z) in the statement of Theorem 2.3. Our
methodology in the proof means that each of these would be equivalent statements.

The fact that all compact Hausdorff systems exhibit second weak shadowing now follows as an immediate
corollary to Theorem 2.3. Note that Corollary 2.4 is a generalisation of [22, Theorem 3.1].

Corollary 2.4. Let (X, f) be a dynamical system where X is a compact Hausdorff space. Then the system
has second weak shadowing.

Proof. Let E ∈ U be given and let D ∈ U correspond to this as in Theorem 2.3. Take a D-pseudo-orbit
(xi)i≥0. By Theorem 2.3 there exists z ∈ X such that

BE ({xi}i≥0) ⊇ Orb(z).

Theorem 2.5. Let X be a compact Hausdorff space and f : X → X be a continuous function. The system
(X, f) is minimal if and only if for any E ∈ U there exist n ∈ N and D ∈ U such that for any two
D-pseudo-orbits (xi)i≥0 and (yi)i≥0

{yi}ni=0 ⊆ BE ({xi}ni=0)

and
{xi}ni=0 ⊆ BE ({yi}ni=0) .

Proof. First suppose the system is minimal. Let E ∈ U be given. Take n ∈ N and D ∈ U corresponding
to E as in Theorem 2.3. Now let (xi)i≥0 and (yi)i≥0 be two D-pseudo-orbits. By Theorem 2.3 there exist
z1, z2 ∈ X such that BE ({xi}ni=0) ⊇ ω(z1) and BE ({yi}ni=0) ⊇ ω(z2). As (X, f) is minimal ω(z1) = ω(z2) =
X. It follows that BE ({xi}ni=0) = BE ({yi}ni=0) = X. Hence

{yi}ni=0 ⊆ BE ({xi}ni=0)

and
{xi}ni=0 ⊆ BE ({yi}ni=0) .

Now suppose the system is not minimal. Then there exists x ∈ X such that ω(x) 6= X. Pick y ∈ ω(x)
and let z ∈ X \ ω(x). Take E ∈ U such that BE(z) ∩ ω(x) = ∅. Consider the pseudo-orbits given by
the orbit sequences of y and z: these are D-pseudo-orbits for any D ∈ U . As ω-limit sets are positively
invariant, Orb(y) ⊆ ω(x). Since z /∈ BE(ω(x)) it also follows that z /∈ BE(Orb(y)). In particular, for any
n ∈ N, {f i(z)}ni=0 6⊆ BE

(
{f i(y)}ni=0

)
.
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For the case when X is a compact metric space Theorem 2.5 may be formulated as follows: A dynamical
system (X, f) is minimal precisely when for any ε > 0 there exist δ > 0 and n ∈ N such that for any two
δ-pseudo-orbits (xi)i≥0 and (yi)i≥0

dH ({xi}ni=0, {yi}ni=0) < ε.

Corollary 2.6. Let X is a compact Hausdorff space and f : X → X be a continuous function. The system
(X, f) is minimal if and only if for any E ∈ U there exist n ∈ N and D ∈ U such that for any D-pseudo-orbit
(xi)i≥0 we have BE ({xi}ni=0) = X.

Proof. Immediate from the proof of Theorem 2.5.

Corollary 2.7. Let X be a compact Hausdorff space. If (X, f) is a minimal dynamical system then it
exhibits the strong orbital shadowing property.

Proof. Let E ∈ U be given. Take n ∈ N and D ∈ U corresponding to E as in Theorem 2.5. Now let (xi)i≥0
be a D-pseudo-orbit and pick any z ∈ X. Since (xN+i)i≥0 and (fN+i(z))i≥0 are D-pseudo-orbits for all
N ∈ N0, by Corollary 2.6,

BE ({xN+i}i≥0) = X = BE

(
{fN+i(z)}i≥0

)
.

The result follows.
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