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HEAT-FLOW MONOTONICITY UNDERLYING SOME SHARP
INEQUALITIES IN GEOMETRIC AND HARMONIC ANALYSIS

NEAL BEZ

Abstract. The intention of this article is to provide a summary of recent collaborative

work of the author on heat-flow monotonicity underlying certain fundamental inequalities

in euclidean geometric and harmonic analysis. The paradigm is to allow the input
function (or functions) to evolve according to certain nonlinear heat-flow and ask whether

the induced quantity is monotone for all positive time.

1. Introduction

For d ∈ N and t > 0 let Ht denote the heat kernel on Rd given by

Ht(x) :=
1
td/2

e−π|x|
2/t.

Certain inequalities which are intrinsically geometric are known to be underpinned by an
associated monotone quantity which arises by allowing the (nonnegative) input functions to
evolve under nonlinear heat-flow of the form

(1.1) f 7−→ (Ht ∗ fp)1/p

for some p > 0. We illustrate this with the celebrated geometric Brascamp–Lieb inequality
of Ball [3] and Barthe [5]; a powerful inequality which counts the multilinear Hölder and
Loomis–Whitney inequalities as special cases. For j = 1, . . . ,m let dj ∈ N, pj ≥ 1 and let
Bj : Rd → Rdj be a linear mapping such that B∗jBj is a projection and

m∑
j=1

1
pj
B∗jBj = Id,

where Id is the identity mapping on Rd. Then the geometric Brascamp–Lieb inequality,

(1.2)
∫

Rd

m∏
j=1

fj(Bjx) dx ≤
m∏
j=1

‖fj‖Lpj (Rdj )

for nonnegative functions fj ∈ Lpj (Rdj ), is a consequence of the nondecreasingness of Q :
(0,∞)→ (0,∞) given by

Q(t) =
∫

Rd

m∏
j=1

uj(t, Bjx)1/pj dx.
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2 NEAL BEZ

Here, uj : (0,∞)× Rdj → (0,∞) is given by

(1.3) uj(t, ·) = Ht ∗ f
pj

j

and thus solves the heat equation ∂tuj = 1
4π∆uj on Rdj with initial data fpj

j . In particular,
if each function fj is sufficiently well-behaved (such as bounded with compact support) then∫

Rd

m∏
j=1

fj(Bjx) dx = lim
t→0

Q(t) ≤ lim
t→∞

Q(t) =
m∏
j=1

‖fj‖Lpj (Rdj ).

This type of heat-flow proof of the geometric Brascamp–Lieb inequality is due to Carlen,
Lieb and Loss [19] in the case of rank one mappings and Bennett, Carbery, Christ and Tao
[16] in the general rank case. We remark that a closely related argument shows that the
geometric Brascamp–Lieb inequality is recoverable from a monotone quantity in which the
input functions evolve according to the “Mehler-flow” ũj : (0,∞) × Rdj → (0,∞) which
satisfies

∂tũj = 1
4π∆ũj + 〈x, ũj〉+ dj ũj .

See [8] for a proof of this observation in the rank one case; the general rank case follows by
a straightforward modification of the argument.

A somewhat different use of heat-flow as a tool for proving (1.2) can be found in [10]. The
approach in [10], inspired by work of Borell, simultaneously provides a proof of the reverse
geometric Brascamp–Lieb inequality due to Barthe [4], [5]. The survey article [7] contains
further discussion of this alternative type of heat-flow approach to geometric inequalities.

Another significant instance of the fruitfulness of the heat-flow monotonicity approach out-
lined here is the proof of the multilinear Kakeya maximal inequalities in [17]. The technique
has also proved successful outside the euclidean realm. In [19] and [20] respectively, Carlen,
Lieb and Loss adapted the technique to prove certain multilinear inequalities in the spirit
of (1.2) via heat-flows on the sphere Sd−1 in Rd and the permutation group Sd on d letters
(see also [9] for an extension in the spherical case).

Heuristically, the flow uj(t, x) in (1.3) asymptotically behaves like ‖fj‖
pj

LpjHt(x) for large
time t and consequently it is well-suited to inequalities which are sharp when evaluated on
centred gaussians. Classical examples of which are “interior cases” of the Young convolution
inequality on Rd; that is, (by duality) the inequality

(1.4)
∫

Rd

∫
Rd

f1(x)f2(y)f3(x− y) dxdy ≤ C
3∏
j=1

‖fj‖Lpj (Rd)

for nonnegative functions fj ∈ Lpj (Rd) and pj ∈ (1,∞) such that
∑3
j=1

1
pj

= 2. In this
case, ( 1

p1
, 1
p2
, 1
p′
3
) lies on interior of the triangle, T , whose vertices lie at (0, 1, 0), (1, 0, 0) and

(1, 1, 1) and it is known that the sharp constant in (1.4) may be expressed as

C = ‖H1/p1
σ1
∗H1/p2

σ2
‖
Lp′

3 (Rd)

(due to Beckner [11], [12] and Brascamp and Lieb [18]). Here, σ1, σ2 > 0 satisfy 1
p1

(1 −
1
p1

)σ2 = 1
p2

(1 − 1
p2

)σ1 and p′3 is the conjugate exponent to p3. For such exponents, via a
change of variables the inequality in (1.4) sits under the umbrella of the geometric Brascamp–
Lieb inequality and is therefore recoverable from a monotone quantity which arises from a
modification of the heat-flow in (1.3). See [19] and [16] for further details.
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In Section 2 of this article we give a unified and direct heat-flow monotonicity treatment of
the Young convolution inequality on Rd and its reverse form. With nonsharp constant the
reverse form was first noticed by Leindler [25] and the sharp form was proved by Brascamp
and Lieb [18]. For sufficiently well-behaved functions fj ∈ Lpj (Rd) we show that the norm

‖f1 ∗ f2‖Lp(Rd)

exhibits monotonicity as each fj evolves according to heat-flow of form (1.1). In partic-
ular, provided 1

p1
+ 1

p2
= 1 + 1

p the induced quantity is nondecreasing for p1, p2 ≥ 1 and
nonincreasing for p1, p2 ≤ 1.

In Section 3 we pursue the applicability of the paradigm in the context of the Strichartz
space-time estimates for the homogeneous Schrödinger equation. When the Lebesgue space
exponents for which such estimates hold conspire to allow us to “multiply out” the Strichartz
norm we observe a rather dramatic monotonicity under the flow (1.1) with p = 2.

Finally, in Section 4 we consider the classical Hausdorff–Young inequality on Rd. Whenever
the conjugate exponent p′ is an even integer the Lp

′
(Rd) norm of the Fourier transform of

f is nondecreasing as the function f evolves under the flow in (1.1). This follows from [16]
since the multiplied out expression for the norm coincides with a geometric Brascamp–Lieb
inequality via a change of variables. However, we produce explicit counterexamples to show
that this monotonicity property fails substantially whenever p′ > 2 is not an even integer.
We remark that such considerations are reasonable given Beckner’s famous theorem on the
gaussian extremisability of the Hausdorff–Young inequality [11], [12].

Acknowledgement. I would like to express my gratitude to Jon Bennett for many stimulating
conversations on this work.

2. Convolution inequalities

Let d ∈ N. Suppose 0 < p1, p2, p <∞ satisfy the scaling condition

(2.1)
1
p1

+
1
p2

= 1 +
1
p

and σ1, σ2 ≥ 0 satisfy the relation

(2.2)
1
p1

(
1− 1

p1

)
σ2 =

1
p2

(
1− 1

p2

)
σ1.

Let Q : (0,∞)→ (0,∞) be given by

Q(t) = ‖u1(t, ·)1/p1 ∗ u2(t, ·)1/p2‖Lp(Rd),

where uj : (0,∞)× Rd → (0,∞) is given by

(2.3) uj(t, ·) = Hσjt ∗ f
pj

j

for some nonnegative fj ∈ Lpj (Rd). Thus, uj satisfies the heat equation

∂tuj =
σj
4π

∆uj .

Theorem 2.1 (Bennett, B. [13]). If p1, p2 ≥ 1 then Q(t) is nondecreasing for each t > 0
and if p1, p2 ≤ 1 then Q(t) is nonincreasing for each t > 0.
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Notice that Theorem 2.1 contains certain “boundary cases”. In particular, we are including
the exponents corresponding to the boundary of the triangle T , defined in the Introduction,
with the exception of the vertices (0, 1, 0), (1, 0, 0) and their connecting edge.

One can show that

lim
t→0

Q(t) = ‖f1 ∗ f2‖Lp(Rd) and lim
t→∞

Q(t) = C‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd),

at least for bounded and compactly supported fj , and the constant C is given by

C = ‖H1/p1
σ1
∗H1/p2

σ2
‖Lp(Rd).

Consequently, from Theorem 2.1 we recover the sharp Young convolution inequality and its
reverse form which state that, for nonnegative functions fj ∈ Lpj (Rd), the difference

(2.4) C‖f1‖Lp1 (Rd)‖f2‖Lp2 (Rd) − ‖f1 ∗ f2‖Lp(Rd)

is nonnegative if p1, p2 ≥ 1 and nonpositive if p1, p2 ≤ 1.

In the admitted boundary cases where exactly one of p1 and p2 is equal to 1, say pj , (2.2)
implies that σj vanishes and thus the flow uj is constant in time. Formally substituting the
Dirac delta distribution supported at the origin for the heat kernel Ht at time zero, we see
that C = 1 in this case. Moreover, for such exponents the monotonicity in Theorem 2.1 is
strict (this agrees with the known fact that extremisers do not exist in the corresponding
Young convolution inequality) and directly follows from the following explicit formula, a
by-product of our proof of Theorem 2.1.

Q′(t) =
ε

8πQ(t)p−1

∫
Rd

∫
Rd

∫
Rd

(u1/p1
1 ∗ u1/p2

2 )(x)p−2u1(x− y)1/p1u2(y)1/p2×

u1(x− z)1/p1u2(z)1/p2

∣∣∣∣(σ1
p1
| 1
p1
− 1|

)1/2
∇u1
u1

(x− y) +
(
σ2
p2
| 1
p2
− 1|

)1/2
∇u2
u2

(y)

−
(
σ1
p1
| 1
p1
− 1|

)1/2
∇u1
u1

(x− z)−
(
σ2
p2
| 1
p2
− 1|

)1/2
∇u2
u2

(z)
∣∣∣∣2 dxdydz

for each t > 0. Here ε is defined to be 1 if p1, p2 ≥ 1 and −1 if p1, p2 ≤ 1, and we
have suppressed the t-variable in the integrand. Furthermore, the known characterisation
of extremals for which the quantity in (2.4) is zero is fully recoverable from the above
expression for Q′(t).

Proof of Theorem 2.1. For j = 1, 2 let vj denote the time dependent vector field on Rd given
by vj = ∇ log uj . Let u : (0,∞)× Rd → (0,∞) be given by

(2.5) u1/p = u
1/p1
1 ∗ u1/p2

2

and let σ be given by

(2.6) σp = σ1p1 + σ2p2.

We claim that ∂tu− σ
4π∆u is nonnegative when p1, p2 ≥ 1 and nonpositive when p1, p2 ≤ 1.

Since Q(t)p =
∫
u(t, ·) the claimed monotonicity in Theorem 2.1 follows by differentiating

through the integral and an application of the divergence theorem.
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To see the claim, first observe that
1

u(p−2)/p

[
4π∂tu− 1

p (σ1p1 + σ2p2) ∆u
]

= pσ1
p1

(1− 1
p1

)u1/p(u1/p1
1 |v1|2 ∗ u1/p2

2 ) + pσ2
p2

(1− 1
p2

)u1/p(u1/p1
1 ∗ u1/p2

2 |v2|2)+

1
p1p2

(σ1(p− p1) + σ2(p− p2))u1/p(u1/p1
1 v1 ∗ u1/p2

2 v2)− (p− 1)(σ1p1 + σ2p2)|∇(u1/p)|2,

where we have used a freedom afforded by the fact that the derivative of a convolution of
two (suitable) functions may equally well land on either. The proof completes by noticing
that the right-hand side of the above expression evaluated at (t, x) ∈ (0,∞)× Rd coincides
with

ε
2

∫
Rd

∫
Rd

u1(t, x− y)1/p1u2(t, y)1/p2u1(t, x− z)1/p1u2(t, z)1/p2×

|Λ1/2
1 v1(t, x− y) + Λ1/2

2 v2(t, y)− Λ1/2
1 v1(t, x− z)− Λ1/2

2 v2(t, z)|2 dydz,

where (Λ1,Λ2) := (pσ1
p1
|1 − 1

p1
|, pσ2

p2
|1 − 1

p2
|) and ε is defined to be 1 if p1, p2 ≥ 1 and -1 if

p1, p2 ≤ 1. This follows by expanding the square in the integrand and the hypotheses (2.1)
and (2.2). This completes the proof of Theorem 2.1. �

At the heart of our proof of Theorem 2.1 is a closure property for solutions of heat inequali-
ties. Essentially, we have shown that if, for j = 1, 2, we have pj ≥ 1 and uj : (0,∞)×Rd →
(0,∞) satisfies

∂tuj ≥
σj
4π

∆uj

then
∂tu ≥

σ

4π
∆u,

where u and σ are given by (2.5) and (2.6), respectively. Similarly, if pj ≤ 1 and

∂tuj ≤
σj
4π

∆uj

for j = 1, 2 then
∂tu ≤

σ

4π
∆u.

Here we have ignored some technical details which relate to the finiteness of various Lebesgue
integrals arising in the argument. In [13] we identify a natural list of further (technical)
ingredients which guarantee the existence of such integrals and are also closed under the
operation (p1, p2, σ1, σ2, u1, u2) 7→ (p, σ, u).

We note that the heat-flow monotonicity associated to the geometric Brascamp–Lieb in-
equality discussed in the Introduction here also rests on a similar closure property of heat
inequalities under the operation (u1, . . . , um) 7→ u where u is the “geometric mean” given
by

u(t, ·) =
m∏
j=1

uj(t, Bj ·)1/pj .

This observation is implicit in the work [19] and [16]. In [13] we also note that a similar
closure property holds for harmonic addition; that is (u1, u2) 7→ u where

1
u

=
1
u1

+
1
u2
.
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This closure property is easily seen to imply a “harmonic triangle inequality”.

An advantage of the perspective of closure is that one may iterate and this allows us to
deduce the following generalisation of Theorem 2.1 in a rather cheap way. Suppose 0 <
p1, . . . , pn, p <∞ satisfy

(2.7)
n∑
j=1

1
pj

= n− 1 +
1
p

and let 0 ≤ σ1, . . . , σn <∞ satisfy
1
pj

(
1− 1

pj

)
σk =

1
pk

(
1− 1

pk

)
σj

for each j, k = 1, . . . , n. Let Q : (0,∞)→ (0,∞) be given by

Q(t) = ‖u1(t, ·)1/p1 ∗ · · · ∗ un(t, ·)1/pn‖Lp(Rd)

where uj : (0,∞)× Rd → (0,∞) is given by (2.3) for some nonnegative fj ∈ Lpj (Rd).

Theorem 2.2 (Bennett, B. [13]). If p1, . . . , pn ≥ 1 then Q(t) is nondecreasing for each
t > 0 and if p1, . . . , pn ≤ 1 then Q(t) is nonincreasing for each t > 0.

As one may expect, from Theorem 2.2 (and its proof) we recover the sharp n-fold Young
convolution inequality, its reverse form and a complete characterisation of extremals.

We conclude this section by describing an extension of our results when the scaling condition
(2.7) is relaxed. Let 1 ≤ p1, . . . , pn, p <∞ be such that

(2.8)
n∑
j=1

1
pj
≥ n− 1 +

1
p

and suppose that 0 ≤ α1, . . . , αn ≤ 1 satisfy
n∑
j=1

αj
pj

= n− 1 +
1
p
.

Let 0 ≤ σ1, . . . , σn <∞ satisfy
1
pj

(
1− αj

pj

)
σk =

1
pk

(
1− αk

pk

)
σj

for each j, k = 1, . . . , n. Finally, let Q : (0,∞)→ (0,∞) be given by

Q(t) = td(
∑n

j=1 1/pj−(n−1)−1/p)/2‖u1(t, ·)1/p1 ∗ · · · ∗ un(t, ·)1/pn‖Lp(Rd)

where uj : (0,∞)× Rd → (0,∞) is given by (2.3) for some nonnegative fj ∈ Lpj (Rd).

Theorem 2.3 (Bennett, B. [13]). For each t > 0, Q(t) is nondecreasing.

The idea behind this extension originates in [16]. As was the case with Theorems 2.1 and 2.2,
one can view Theorem 2.3 as a corollary to a closure property associated to heat inequalities.
The additional ingredient under the relaxed scaling condition (2.8) is that the differential
inequalities

(2.9) σjdiv(∇ log uj)(t, ·) ≥ −
2dπ
t
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for uj : (0,∞)× Rd → (0,∞) and j = 1, . . . , n imply

σdiv(∇ log u)(t, ·) ≥ −2dπ
t
,

where u is given by
u1/p = u

1/p1
1 ∗ · · · ∗ u1/pn

n

and σ is given by

σp =
n∑
j=1

σjpj .

We remark that if uj satisfies the heat equation ∂tuj = σj

4π∆uj with nonnegative initial data
then (2.9) follows from a certain log-convexity property of solutions to heat equations; see
Corollary 8.7 of [16].

3. Strichartz estimates for the homogeneous Schrödinger equation

For d ∈ N let the Fourier transform f̂ : Rd → C of a Lebesgue integrable function f on Rd
be given by

(3.1) f̂(ξ) =
∫

Rd

e−2πix·ξf(x)dx.

For each s ∈ R let eiπs∆ denote the Fourier multiplier operator given by

êiπs∆f(ξ) = e−iπs|ξ|
2
f̂(ξ),

for all f belonging to the Schwartz class S(Rd) and ξ ∈ Rd. Thus for each f ∈ S(Rd) and
x ∈ Rd,

eiπs∆f(x) =
∫

Rd

e2πi(x·ξ− s
2 |ξ|

2)f̂(ξ) dξ

and we have that eiπs∆f solves the homogeneous Schrödinger equation

i
∂u

∂s
= − 1

4π
∆u

on Rd with initial data f . It is now well-known that the solution operator eiπs∆ satisfies
the Strichartz space-time estimate

‖eiπs∆f‖Lp(R,Lq(Rd)) ≤ C‖f‖L2(Rd)(3.2)

for some finite constant C if and only if (p, q, d) is Schrödinger admissible; i.e. p, q ≥ 2,
(p, q, d) 6= (2,∞, 2) and 2

p + d
q = d

2 . See [24] for the endpoint case (2, 2d/(d − 2), d) and
references therein for earlier contributions.

From the orientation of euclidean harmonic analysis, we recall the familiar fact that eiπs∆f̂
coincides with the adjoint restriction operator (the extension operator) associated to the
paraboloid applied to f . The estimate in (3.2) for p = q = 2 + 4/d is classical and is due to
Strichartz [26] who followed arguments of Stein and Tomas [27].

In [15] we observe the following monotonicity property of space-time norms associated to
propagator eiπs∆ for certain special exponents. For aesthetic reasons, we adopt the notation

eπt∆f := Ht ∗ f
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at this point for the solution to the heat equation ∂tu = 1
4π∆u with initial data f .

Theorem 3.1 (Bennett, B., Carbery, Hundertmark [15]). Let (p, q, d) be a Schrödinger
admissible triple such that q is an even integer which divides p. If f is a nonnegative
integrable function on Rd and α ∈ [1/2, 1] then Qα : (0,∞)→ (0,∞) given by

Qα(t) = td(α−1/2)/2‖eiπs∆(eπt∆f)α‖Lp(R,Lq(Rd)).

is nondecreasing for each t > 0.

Triples (p, q, d) satisfying the hypothesis in Theorem 3.1 are (6, 6, 1), (8, 4, 1) and (4, 4, 2).
For such exponents, it follows from Theorem 3.1 when α = 1/2 and f = |g|2 for some
bounded and compactly supported function g on Rd that

‖eiπs∆|g|‖Lp(R,Lq(Rd)) = lim
t→0

Q1/2(t) ≤ lim
t→∞

Q1/2(t) = C‖g‖L2(Rd),

where C = ‖eiπs∆H1/2
1 ‖Lp(R,Lq(Rd)). Moreover,

‖eiπs∆g‖Lp(R,Lq(Rd)) ≤ ‖eiπs∆|g|‖Lp(R,Lq(Rd))

since q is an even integer which divides p. For the (6, 6, 1) and (4, 4, 2) cases, we recover
the sharp Strichartz estimates for the homogeneous Schrödinger equation due to Foschi [21]
and independently Hundertmark and Zharnitsky [23]. In the (8, 4, 1) case, the heat-flow
monotonicity (and hence sharp inequality) follows cheaply from the (4, 4, 2) case via the
observation

‖eiπs∆(eπt∆f)α‖2L8(R,L4(R)) = ‖eiπs∆(eπt∆f ⊗ f)α‖L4(R,L4(R2)).

We shall see in the proof of Theorem 3.1 below that the nondecreasingness of Qα follows by
bringing together Strichartz-norm representation formulae of Hundertmark and Zharnitsky
[23] and a monotonicity property associated to the Cauchy–Schwarz inequality contained in
Lemma 3.2 below. One can view the fact that we consider the exponents which allow us
to mulitply out the norm as avoiding “bad” oscillatory behaviour. We add some strength
to this philosophy in the next section in the context of the Fourier transform and the
Hausdorff–Young inequality.

Lemma 3.2. Suppose n ∈ N, α ∈ [1/2, 1] and f1, f2 are nonnegative integrable functions
on Rn. Then Q̃α : (0,∞)→ (0,∞) given by

Q̃α(t) = tn(α−1/2)

∫
Rn

(eπt∆f1)α(eπt∆f2)α dx

is nondecreasing for all t > 0.

For a proof of the above lemma, we refer the reader to [16]. When α = 1/2, matters
are reduced to a special case of the monotonicity inherent in the geometric Brascamp–
Lieb inequality considered in the Introduction here. In this case, the proof is particularly
straightforward and produces the explicit formula

(3.3) Q̃′1/2(t) =
1
2

∫
Rn

|∇(log eπt∆f1)−∇(log eπt∆f2)|2(eπt∆f1)1/2(eπt∆f2)1/2 dx

for each t > 0.
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Proof of Theorem 3.1. We begin with the (6, 6, 1) case. The (4, 4, 2) case follows by a similar
argument and we omit the details.

For Schwartz functions f on R,

‖eiπs∆f‖6L6(R×R) =
2π√

3

∫
R3
F (x)PF (x) dx

where P is the projection onto functions on R3 which are invariant under the rotations
about the direction (1, 1, 1) and F is the three-fold tensor product of f . The identification
of P as a particularly simple projection operator is due to Hundertmark and Zharnitsky
[23]. For our goal of monotonicity it is important that we may write

PF (x) =
∫
O

F (ρx) dH(ρ)

where O is the group of isometries on R3 which coincide with the identity on the span of
(1, 1, 1) and dH denotes the right-invariant Haar probability measure on O.

Notice that
eπt∆f ⊗ eπt∆f ⊗ eπt∆f = eπt∆F

and, for each isometry ρ on R3,

(eπt∆f ⊗ eπt∆f ⊗ eπt∆f)(ρ ·) = eπt∆Fρ

where Fρ := F (ρ ·). Therefore,

Qα(t)6 =
2π√

3

∫
O

t3(α−1/2)

∫
R3

(eπt∆F )α(x)(eπt∆Fρ)α(x) dxdH(ρ)

and, by Lemma 3.2 and the nonnegativity of the measure dH, it follows that Qα(t) is
nondecreasing for each t > 0. �

The proof of Theorem 3.1 combined with (3.3) produces an explicit formula the derivative
of Q1/2 at each time t > 0 from which it is possible to recover the complete characterisation
of extremals as gaussians in the corresponding Strichartz estimates. This characterisation
is due to Foschi [21] and Hundertmark and Zharnitsky [23].

4. The Hausdorff–Young inequality

Let f be a nonnegative integrable function on Rd and for 2 ≤ q ≤ p′ ≤ ∞ let Qp,q : (0,∞)→
(0,∞) be given by

Qp,q(t) = td(1/q−1/p′)/2
∥∥∥ ̂u(t, ·)1/p

∥∥∥
Lq(Rd)

,

where u(t, ·) = Ht ∗ f and ̂ is the Fourier transform given by (3.1). By taking q = p′ and
f = |g|p for a bounded and compactly supported function g on Rd, ifQp,q were nondecreasing
for each t > 0 then

‖ |̂g| ‖Lp′ (Rd) = lim
t→0

Qp,q(t) ≤ lim
t→∞

Qp,q(t) =
∥∥Ĥ1/p

1

∥∥
Lp′ (Rd)

‖g‖Lp(Rd).
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If q = p′ is an even integer then by Plancherel’s theorem one may write Qp,q in terms of a
q/2-fold convolution

Qp,q(t) = td(1/q−1/p′)/2‖u(t, ·)1/p ∗ · · · ∗ u(t, ·)1/p‖2/q
L2(Rd)

.

By expanding the above L2(Rd) norm it follows from [16] that Qp,q is nondecreasing for
each t > 0; see [14] for a verification of this fact. Alternatively, one can appeal directly to
Theorem 2.3. Since p′ is an even integer we have

‖ĝ‖Lp′ (Rd) ≤ ‖ |̂g| ‖Lp′ (Rd)

and thus one recovers the sharp form of the Hausdorff–Young inequality on Rd

‖ĝ‖Lp(Rd) ≤
∥∥Ĥ1/p

1

∥∥
Lp′ (Rd)

‖g‖Lp(Rd)

for p′ an even integer due to Babenko [1], [2].

However, the monotonicity of Qp,q fails dramatically if q is not an even integer, as our next
result shows.

Theorem 4.1 (Bennett, B., Carbery [14]). Let d ∈ N, 2 ≤ q ≤ p′ ≤ ∞ and suppose q is
not an even integer. Then there exists a nonnegative integrable function f on Rd such that
Qp,q(t) is strictly decreasing for sufficiently small t > 0.

Theorem 4.1 is of course a significant obstacle to finding a proof based on heat-flow of the
sharp Hausdorff–Young inequality due to Beckner [11], [12]; i.e. for all p′ ∈ [2,∞).

Proof of Theorem 4.1. It suffices to handle d = 1, since if f is a one-dimensional counterex-
ample to the monotonicity of Qp,q, then

⊗d
j=1 f is a d-dimensional counterexample. Given

the special relationship that convolution and the Fourier transform enjoy, it is natural to
consider the case p = 1 first of all.

Using the semigroup property of the heat kernel Ht, it is sufficient to find a counterexample
in the form of a finite Borel measure µ on R. To this end, let m and n be coprime integers
to be chosen later, r ∈ (0, 1/2) and

µ = δ0 + rδm + rδn,

where δj denotes the Dirac delta measure supported at the integer j. Thus, µ̂(ξ) = 1 +
re−2πimξ + re−2πinξ and if cn denotes the nth Fourier coefficient of |µ̂|q then it follows that
we can express Q1,q(t) as the following power series in e−π/qt:

Q1,q(t)q = q−1/2
∑
n∈Z

cne
−πn2/qt.

By differentiating the above expression for Q1,q(t)q term by term it follows that the sign of
Q1,q(t) as t > 0 approaches zero coincides with the sign of c1 + c−1. Now,

|µ̂(ξ)|q =
∞∑
k=0

akr
k(e−2πimξ + e−2πinξ)k

∞∑
k′=0

ak′rk
′
(e2πimξ + e2πinξ)k

′
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where ak is the kth binomial coefficient in the expansion of (1 +x)q/2. It is only here where
we use the size restriction on the parameter r. Observe that if k < q/2 + 1 then ak > 0, and
thereafter ak is strictly alternating in sign. Now,

c1 + c−1 = 2
∞∑

k,k′=0

akak′rk+k′
∫ 1

0

(e−2πimξ + e−2πinξ)k(e2πimξ + e2πinξ)k
′
e−2πiξ dξ

= 2
∞∑

k,k′=0

akak′rk+k′ ∑
(j,j′)∈Λk,k′

(
k

j1

)(
k′

j′1

)
,

where

Λk,k′ = {(j, j′) = ((j1, j2), (j′1, j
′
2)) ∈ (N2

0)2 : j1 + j2 = k, j′1 + j′2 = k′ and

m(j1 − j′1) + n(j2 − j′2) = 1}

and N0 := N ∪ {0}.

We claim that by choosing m and n appropriately (depending on q) we can ensure that
Λk,k′ is empty whenever akak′ > 0. Remarkably, it is not difficult to show that if m and
n have the same parity the sets Λk,k′ are empty whenever k and k′ have the same parity.
Moreover, if one chooses m and n to be “sufficiently coprime” in the sense that whenever
αm+βn = 1 the vector (α, β) is sufficiently distant from the origin, then one can show that
Λk,k′ is empty whenever one of k and k′ is less than q/2+1. This leaves a contribution from
summands with k and k′ greater than q/2 + 1 and, as long as one summand is nonzero, it
follows that c1 + c−1 < 0 as required. For further details of these arguments we refer the
reader to [14].

The manner in which the oscillation is exploited in the above argument via an infinite
binomial expansion involving negative coefficients is in the spirit of the Hardy–Littlewood
majorant counterexample in [22].

The idea behind our argument for p > 1 is the following. For large m and n which are
sufficiently far apart and small t > 0, Ht ∗ µ is a finite sum of “well-separated” gaussians
and consequently (Ht ∗ µ)1/p is “very close” to H1/p

t ∗ µ̃, where

µ̃ := δ0 + r1/pδm + r1/pδn.

Combined with the correcting power of t from the definition of Q, Ht raised to the power
1/p is essentially the same heat kernel at a rescaled time. Furthermore, it is not difficult
to locate a suitable pair of large and well-separated integers (m,n) for which our argument
for p = 1 works. Therefore, our analysis for the measure µ above is sufficient, modulo an
error term, to produce a counterexample for all p > 1. This argument is made rigorous in
[14]. �

References

[1] Babenko, K. I., An inequality in the theory of Fourier integrals, Izv. Akad. Nauk. SSSR Ser. Mat., 25
(1961), 531–542.

[2] Babenko, K. I., Amer. Math. Soc. Transl., 44 (1965), 115–128.
[3] Ball, K., Volumes of sections of cubes and related problems, Geometric Aspects of Functional Analysis

(Lindenstrauss, J. and Milman, V. D., eds.) Springer Lecture Notes in Math., 1376 (1989), 251–260.



12 NEAL BEZ
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[8] Barthe, F. and Cordero-Erausquin, D., Inverse Brascamp–Lieb inequalities along the heat equation,

Geometric Aspects of Functional Analysis (Milman, V. D. and Schechtman, G., eds.), Lecture Notes
in Mathematics 1850, Springer–Verlag, Berlin 2004, 65–71.

[9] Barthe, F., Cordero-Erausquin, D. and Maurey, B., Entropy of spherical marginals and related inequal-

ities, J. Math. Pures Appl., 86 (2006), 89–99.
[10] Barthe, F. and Huet, N., On Gaussian Brunn-Minkowski inequalities, arXiv:0804.0886v1.

[11] Beckner, W., Inequalities in Fourier analysis, Ann. of Math., 102 (1975), 159–182.
[12] Beckner, W., Inequalities in Fourier analysis on Rn, Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 638–641.

[13] Bennett, J. and Bez, N., Closure properties of solutions to heat inequalities, arXiv:0806.2086.

[14] Bennett, J., Bez, N. and Carbery, A., Heat-flow monotonicity related to the Hausdorff–Young inequality,
arXiv:0806.4329.

[15] Bennett, J., Bez, N., Carbery, A. and Hundertmark, D., Heat-flow monotonicity of Strichartz norms,

in preparation.
[16] Bennett, J., Carbery, A., Christ, M. and Tao, T., The Brascamp–Lieb inequalities: finiteness, structure

and extremals, Geom. Funct. Anal., 17 (2007), 1343–1415.

[17] Bennett, J., Carbery, A. and Tao, T., On the multilinear restriction and Kakeya conjectures, Acta
Math., 196 (2006), 261–302.

[18] Brascamp, H. J. and Lieb, E. H., Best constants in Young’s inequality, its converse, and its generalization

to more than three functions, Adv. Math., 20 (1976), 151–173.
[19] Carlen, E. A., Lieb, E. H. and Loss, M., A sharp analog of Young’s inequality on SN and related

entropy inequalities, Jour. Geom. Anal., 14 (2004), 487–520.
[20] Carlen, E. A., Lieb, E. H. and Loss, M., An inequality of Hadamard type for permanents, Methods

Appl. Anal., 13 (2006), 1–17.

[21] Foschi, D., Maximizers for the Strichartz inequality, J. Eur. Math. Soc., 9 (2007), 739–774.
[22] Hardy, G. H. and Littlewood, J. E., Notes on the theory of series (XIX): A problem concerning majorants

of Fourier series, Quart. J. Math., 6 (1935), 304–315.

[23] Hundertmark, D. and Zharnitsky, V., On sharp Strichartz inequalities in low dimensions, Int. Math.
Res. Not., (2006), 1–18.

[24] Keel, M. and Tao, T., Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980.
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