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Lp-BOUNDEDNESS FOR THE HILBERT TRANSFORM AND
MAXIMAL OPERATOR ALONG A CLASS OF NONCONVEX

CURVES

NEAL BEZ

Abstract. Some sufficient conditions on a real polynomial P and a convex

function γ are given in order for the Hilbert transform and maximal operator
along (t, P (γ(t))) to be bounded on Lp, for all p in (1,∞), with bounds inde-

pendent of the coefficients of P . The same conclusion is shown to hold for the

corresponding hypersurface in Rd+1 (d ≥ 2) under weaker hypotheses on γ.

Introduction

Given an integer d ≥ 2 and a map Γ : R→ Rd we define operators H andM by

Hf(x) := p.v.

∫ ∞
−∞

f(x− Γ(t))
dt

t
,

Mf(x) := sup
h>0

h−1

∣∣∣∣∣
∫ h

0

f(x− Γ(t)) dt

∣∣∣∣∣ ,
for appropriate functions f on Rd. We shall refer to H as the (global) Hilbert
transform along Γ andM as the (global) maximal operator along Γ. The question
of whether these operators are bounded on Lp has received much attention in the
last thirty years. In particular, for which Γ and what range of p can we achieve
this? (Of course M is bounded on L∞, and so we choose to omit this triviality
from subsequent theorems on M). We begin with the case that Γ is a ‘polynomial
curve’ in Rd. The following theorem is well known.

Theorem 0.1. ([S]) Let Γ(t) = (P1(t), . . . , Pd(t)), where P1, . . . , Pd are real poly-
nomials on R. Then H and M are bounded on Lp for all p ∈ (1,∞), with bounds
independent of the coefficients of P1, . . . , Pd.

A somewhat related problem is the case when Γ is of finite type, that is to say
{Γ(k)(0) : k ≥ 1} spans Rd. Here we must consider the local versions Hloc andMloc

of the operators H and M, where the integral defining H is restricted to (−1, 1)
and the supremum in the definition of M is restricted to h in (0, 1).

Theorem 0.2. ([SW]) If Γ is of finite type then Hloc and Mloc are bounded on Lp

for all p ∈ (1,∞).

We may then ask what happens in the case that Γ is not of finite type. This
brings us to the simplest case of this kind, where we have d = 2, Γ(t) = (t, γ(t))
and γ is allowed to be infinitely flat at the origin. One such (nonconvex) γ was

The author was supported by an EPSRC award.
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2 NEAL BEZ

constructed in [SW] for whichMloc is unbounded on Lp for any p ∈ (1,∞). Despite
this, positive results are possible for such flat curves when, in particular, we consider
convex γ. If we restrict our attention to curves γ satisfying:

(0.1) γ ∈ C2(0,∞), convex on [0,∞) and γ(0) = γ′(0) = 0,

and extend γ to a function on R by stipulating that it must be either even or odd,
then the following notions naturally arise.

Definition 0.3. (1) A function f : R → R belongs to C1 if there exists λ ∈
(1,∞) such that for each t > 0 we have f(λt) ≥ 2f(t). Such an f is said to
be doubling.

(2) A differentiable function f : R → R belongs to C2 if there exists ε0 > 0
such that for t > 0, f ′(t) ≥ ε0f(t)/t. Such an f is said to be infinitesimally
doubling, and if f is nondecreasing on (0,∞) then f ∈ C2 implies f ∈ C1.

We shall also need the function h defined for t > 0 by h(t) := tγ′(t) − γ(t).
Notice that because γ is convex and γ(0) = 0 we get the important fact that

(0.2) tγ′(t) ≥ γ(t) for all t > 0

(and hence h is nonnegative). We now state a series of known results in this setting.

Theorem 0.4. ([Ca et al]) Suppose γ is even and satisfies (0.1), and p ∈ (1,∞).
Then H is Lp bounded if and only if γ′ ∈ C1.

The L2 result in Theorem 0.4 was proved earlier in [NVWWe]. This is of course
the end of the matter for H when γ is convex and even. In the odd case, the current
situation is less satisfactory. We have:

Theorem 0.5. ([NVWWe]) Suppose γ is odd and satisfies (0.1). Then H is L2

bounded if and only if h ∈ C1.

This theorem of course means that, for each p ∈ (1,∞), h ∈ C1 is a necessary
condition for H to be Lp bounded. However, it was demonstrated in [CChVWWa]
that this condition is far from sufficient. There they construct a γ such that h ∈ C1
yet H is unbounded on Lp for any p ∈ (1,∞) not equal to 2. Some known sufficient
conditions in the odd case are given in the following:

Theorem 0.6. Suppose γ is odd and satisfies (0.1), and p ∈ (1,∞).
(1) ([Ca et al]) If γ′ ∈ C1 then H is Lp bounded.
(2) ([CChVWWa]) If h ∈ C2 then H is Lp bounded.

For M, a necessary and sufficient condition for Lp boundedness in geometric
terms is not known. It was demonstrated in [St] (see also [SeWWrZ]) that a convex
γ exists for which M is unbounded on Lp for all p ∈ (1,∞). There is however an
analogue of Theorem 0.6:

Theorem 0.7. Suppose γ satisfies (0.1) and p ∈ (1,∞).
(1) ([Ca et al]) If γ′ ∈ C1 then M is Lp bounded.
(2) ([CChVWWa]) If h ∈ C2 then M is Lp bounded.

Remark. The case where a convex curve on [0,∞) is extended to be either even or
odd is encompassed by the notion of a biconvex balanced curve given in [CoRdF].
There it is shown that if the derivative of such a curve satisfies a doubling condition
then, for all p ∈ (1,∞), we get Lp boundedness of both H and M (and also the
associated maximal Hilbert transform).
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We shall now present the main result of this short note.

Theorem 0.8. Suppose P is a real polynomial and γ is convex on [0,∞), twice
differentiable, either even or odd, γ(0) = 0, and γ′(0) ≥ 0. If Γ(t) = (t, P (γ(t))),
p ∈ (1,∞), and either (1) P ′(0) is zero, or (2) P ′(0) is nonzero and γ′ ∈ C1, then

‖Hf‖p ≤ C‖f‖p and ‖Mf‖p ≤ C‖f‖p.
Moreover the constant C depends only on p, γ, and the degree of P .

Remarks. (1) By taking γ(t) = t we recover a form of Theorem 0.1 since we can
then suppose P ′(0) = 0. Our proof does not require the ‘lifting’ technique
used in [S] to prove Theorem 0.1. Also, taking P (s) = s we recover Theorem
0.6(1), Theorem 0.7(1), and the sufficiency part of Theorem 0.4.

(2) Some examples of nonconvex curves were studied in [Wr], and later these
were generalised somewhat through a technical theorem in [VWWr]. Al-
though the class of curves in Theorem 0.8 falls within the scope of [VWWr],
the bounds obtained from the technical theorem in [VWWr] depend on the
coefficients of P . Furthermore, our proof is more direct in this setting.

We shall see that ideas in our proof of Theorem 0.8 can be used for certain hyper-
surfaces instead of curves. Specifically, if d ≥ 2 and Γ : Rd → Rd+1 parameterises
a hypersurface, then we associate to this the corresponding Hilbert transform and
maximal operator by

Hf(x) := p.v.

∫
Rd

f(x− Γ(y))K(y) dy,

Mf(x) := sup
h>0

h−d

∣∣∣∣∣
∫
|y|∈[0,h]

f(x− Γ(y)) dy

∣∣∣∣∣ ,
where K : Rd → R is a Calderón-Zygmund kernel; that is K is of class C∞ on
Rd \ {0}, K(ty) = t−dK(y) for each t > 0 and y ∈ Rd, and

∫
|y|∈[a,b]

K(y) dy = 0 for
each 0 < a < b. Then we have the following theorem.

Theorem 0.9. Suppose P is a real polynomial and γ is convex on [0,∞), twice
differentiable, either even or odd, γ(0) = 0, and γ′(0) ≥ 0. If Γ(y) = (y, P (γ(|y|)))
and p ∈ (1,∞) then

‖Hf‖p ≤ C‖f‖p and ‖Mf‖p ≤ C‖f‖p.
Moreover the constant C depends only on p, d, γ, and the degree of P .

Remark. The case P (s) = s was proved in [KWWrZ]. Notice how in this case the
convexity of γ suffices for Lp boundedness, which is in stark contrast to the case
d = 1 that we alluded to earlier.

Notation. For positive A and B, A . B and B & A mean A ≤ CB, where C is
an absolute constant which may depend on p, γ, d, and the degree of P but is
independent of the coefficients of P . Also, A ∼ B denotes A . B . A.

Overview. In the next section we make a suitable decomposition of our operators
based on key results concerning polynomials of one variable. The next section
contains the fundamental results for the proof of Theorem 0.8. In the last section
we prove Theorem 0.9.

Acknowledgement. The author would very much like to thank Jim Wright for his
discussions and guidance on this work.
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1. Preliminaries and reductions

Let P (s) =
∑n
k=1 pks

k be a real polynomial of degree n, where n ≥ 2 (it is
without loss of generality that we suppose P (0) = 0).

If λ is the doubling constant for (γj)′ then define ρ := max{3, λ} and the ‘dyadic’
version M of M by

Mf(x) = sup
k∈Z

ρ−k

∣∣∣∣∣
∫

[ρk,ρk+1]

f(x1 − t, x2 − P (γ(t))) dt

∣∣∣∣∣ ,
Since Mf .M |f |, we shall from now on deal with M .

We now discuss the decomposition of (0,∞) crucial to the proof of Theorem
0.8. The ideas here originated from work in [CRWr] (see also [FGWr]). First
let z1, . . . , zn be the roots of P ordered as 0 = |z1| ≤ |z2| ≤ . . . ≤ |zn|. Our
decomposition will depend on A ∼ 1, whose value we fix later. Firstly, we include
G1 = (0, A−1|z2|]. Then, for j ∈ {2, . . . , n− 1}, if the interval (A|zj |, A−1|zj+1|] is
nonempty this is also included and called Gj . Finally, we include Gn = [A|zn|,∞).
Now let J := {1} ∪ {n} ∪

⋃
Gj 6=∅{j}. Observe that (0,∞) \

⋃
j∈JGj can be written

as
⋃
k∈KDk where the Dk’s are disjoint and, moreover, each Dk = (αk, βk) enjoys

the property that αk ∼ βk. The notation is suggestive since the Dk’s resemble
dyadic intervals and, as we are thinking of A as ‘large’, the Gj ’s are ‘long’ intervals,
or gaps of P . Our decomposition is then:

(0,∞) =
⋃
j∈J

γ|−1
(0,∞)(Gj) ∪

⋃
k∈K

γ|−1
(0,∞)(Dk).(1.1)

We of course then get the corresponding decomposition of R by taking symmetric
versions of the intervals in the above decomposition. If I is a subset of (0,∞) then
define HI and MI by

HIf(x) :=
∫
|t|∈γ|−1

(0,∞)(I)

f(x− Γ(t))
dt

t
,

MIf(x) := sup
k∈Z

ρ−k

∣∣∣∣∣
∫
t∈[ρk,ρk+1]∩γ|−1

(0,∞)(I)

f(x− Γ(t)) dt

∣∣∣∣∣ .
It is easy to see that each HDk

and MDk
are Lp bounded. After an application

of Minkowski’s inequality, this is true if γ−1(βk) . γ−1(αk). This follows because
(0.2) implies

log
γ−1(βk)
γ−1(αk)

=
∫ γ−1(βk)

γ−1(αk)

dt

t
=
∫ βk

αk

1
γ−1(s)γ′(γ−1(s))

ds ≤
∫ βk

αk

ds

s
= log

βk
αk
. 1.

Along with the fact that the cardinalities of J and K are . 1, Theorem 0.8 will
follow once we verify that HGj and MGj are Lp bounded (with bounds independent
of the coefficients of P ), for each j ∈ J. So for the rest of this paper, we fix j ∈ J,
and for k ∈ Z we define Ik := [1, ρ] ∩ ρ−kγ|−1

(0,∞)(Gj), and measures Hk and µk by:

〈Hk, ψ〉 :=
∫
|t|∈Ik

ψ(ρkt, P (γ(ρkt)))
dt

t
, 〈µk, ψ〉 :=

∫
Ik

ψ(ρkt, P (γ(ρkt))) dt,

for ψ ∈ S(R2). In order to analyse HGj
and MGj

, we need to understand the
behaviour of P on Gj . The following lemma is essentially contained in [CRWr] and
[FGWr].
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Lemma 1.1. There exists a number Cn > 1 such that for any A ≥ Cn and any
j ∈ J,

(1) |P (s)| ∼ |pj ||s|j for |s| ∈ Gj;
(2) P ′(s)

P (s) > 0 for s ∈ Gj, P ′(s)
P (s) < 0 for −s ∈ Gj;

(3) |P
′(s)|
|P (s)| ∼ 1

|s| for |s| ∈ Gj;
and for any j ∈ J \ {1},

(4) P ′′(s)
P (s) > 0 and P ′′(s)

P (s) ∼ 1
s2 for |s| ∈ Gj.

Proof. For (1)-(3) see Lemma 2.1 in [FGWr] and Lemma 2.5 of [CRWr]. For (4),
let Nn := {1, . . . , n} and define S1 := {(l1, l2) ∈ Nn × Nn : l1 < l2 and l2 ≤ j} and
S2 := {(l1, l2) ∈ Nn × Nn : l1 < l2 and l2 ≥ j + 1}. Then write

P ′′(s)
P (s)

= 2
∑
l1<l2

1
(s− zl1)(s− zl2)

= 2
∑

(l1,l2)∈S1

1
(s− zl1)(s− zl2)

+ 2
∑

(l1,l2)∈S2

1
(s− zl1)(s− zl2)

=: I + II.

Let <[z] denote the real part of z and suppose A > 10. Then, for (l1, l2) ∈ S1,

<
[

1
(s− zl1)(s− zl2)

]
=
<[(s− zl1)(s− zl2)]
|s− zl1 |2|s− zl2 |2

=
s2 −<[(zl1 + zl2)]s+ <[zl1zl2 ]

|s− zl1 |2|s− zl2 |2

≥
(
1− 2A−1 −A−2

)
(1 +A−1)4

1
s2
,

where the last inequality follows because |zlk | ≤ A−1|s| for k = 1, 2.
If l ≤ j then |s− zl| ≥ (1−A−1)|s| and if l ≥ j + 1 then |s− zl| ≥ (A− 1)|s| ≥

(1−A−1)|s|. Therefore, if (l1, l2) ∈ S2 then
1

|s− zl1 ||s− zl2 |
≤ 1
A (1−A−1)2

1
s2
.

If C ′n is twice the cardinality of S1 and C ′′n is twice the cardinality of S2 then

P ′′(s)
P (s)

= <
[
P ′′(s)
P (s)

]
= <[I] + <[II]

≥

(
C ′n
(
1− 2A−1 −A−2

)
(1 +A−1)4

− C ′′n

A (1−A−1)2

)
1
s2
.

It is now clear that there is some Cn > 1 for which the first assertion of (4) and
the lower bound in the remaining assertion follow for A ≥ Cn. The upper bound is
much easier and we leave the details to the reader. �

By (the proof of) Lemma 1.1, we can choose A so that for all |s| ∈ Gj ,

(1.2) |P (s)| ≤ 2|pj |sj and
1
2
j|pj |sj−1 ≤ |P ′(s)| ≤ 2j|pj |sj−1.

In the light of Lemma 1.1 it is an appropriate moment to discuss our method
of proof of the Lp boundedness of HGj

and MGj
, and hence Theorem 0.8. Firstly,
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P ′(0) being zero is equivalent to G1 being empty. Heuristically Lemma 1.1 tells
us that on Gj the curve (t, P (γ(t))) is essentially (t, |pj |γ(t)j). Of course, when
j = 1 some stronger condition than convexity is necessary. When G1 is nonempty,
under the assumption γ′ ∈ C1, we will be able to follow the proof in [Ca et al] or
[CoRdF] to get Lp bounds for our operators on G1. We stress here that, under
the assumption h ∈ C2 (or the stronger condition γ′ ∈ C2), the method of proof in
[CChVWWa] fails to work for our operators on G1. Fundamental to the argument
in [CChVWWa] are dilation matrices and estimates on the Fourier transform of
certain measures. However the fact that Lemma 1.1(4) does not hold for j = 1
means we are unable to achieve such estimates. For j ≥ 2 either the approach in
[Ca et al] (and also [CoRdF]) or [CChVWWa] is available to us because (γj)′ ∈ C2.
Therefore (γj)′ ∈ C1 and the h-function associated to γj belongs to C2.

The following proposition, which can be found on page 384 of [CZ], lays down the
bare essentials of a combination of ideas from [CChVWWa], [Ca et al] and [CoRdF].
We use this to prove Lp bounds for HGj

and MGj
, and state it as follows:

Proposition 1.2. ([CZ]) Suppose {Ak}k∈Z ⊆ GL(2,R) satisfies

(1.3) ‖A−1
k+1Ak‖ ≤ α < 1.

Suppose {νk}k∈Z is a family of measures satisfying

A−1
k+1suppνk ⊆ B,(1.4)

for some fixed ball B,

(1.5) ν̂k(0) = 0,

and

|ν̂k(ξ)| ≤ C|A∗kξ|−1 for ξ outside some cone 4k.(1.6)

If Tk is defined by T̂kf(ξ) = χ4k
(ξ)f̂(ξ) and satisfies∥∥∥∥∥∥

(∑
k∈Z
|Tkf |2

)1/2
∥∥∥∥∥∥
p

≤ Cp‖f‖p for p ∈ (1,∞),(1.7)

then f 7→
∑
k∈Z νk ∗ f is bounded on Lp for p ∈ (1,∞) with bound depending only

on α,B,C and Cp.

2. Lp bounds for MGj
and HGj

For t > 0 let

A(t) :=
(

t 0
0 |pj |γ(t)j

)
.

Define the family of dilations {Ak}k∈Z by Ak := A(ρk), where we recall that ρ =
max{3, λ} and λ is the doubling constant for (γj)′.

We begin with MGj
and create cancellation by introducing measures σk defined

by:

〈σk, ψ〉 :=
µ̂k(0)
|Ak+1B|

∫
Ak+1B

ψ(x) dx,

where B := {x ∈ R2 : |x| < 10}. To complete the setup of Proposition 1.2, we define
νk := εk(µk − σk), where {εk} ⊆ {−1, 1}. Now (0.2) implies that γ(t)j/γ(s)j ≤ t/s
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whenever s ≥ t > 0, and therefore (1.3) holds with α = 2/ρ < 1. By (1.2), if t ∈ Ik
then |P (γ(ρkt))| ≤ 2|pj |γ(ρkt)j ≤ 2|pj |γ(ρk+1)j . Thus,

suppµk = {(ρkt, P (γ(ρkt))) : t ∈ Ik} ⊆ Ak+1B.

Of course σk is supported in Ak+1B, therefore so is νk and we have (1.4). It is
trivial to verify (1.5). To deal with (1.6) and (1.7) we define 4k to be the set of
ξ = (ξ1, ξ2) in R2 satisfying:

4|pj |(γj)′(ρk+1) >
|ξ1|
|ξ2|

>
1
4
|pj |(γj)′(ρk).(2.1)

The following lemma is well known.

Lemma 2.1. ([NSW]) Let {τk}k∈Z be a sequence of positive real numbers such that
for some R > 1, τk+1 ≥ Rτk for all k ∈ Z. Let M > 1 and define 4k to be the set
of all ξ ∈ R2 satisfying M−1τk ≤ |ξ1||ξ2|−1 ≤Mτk+1. If T̂kf = χ4k

f̂ then∥∥∥∥∥∥
(∑
k∈Z
|Tkf |2

)1/2
∥∥∥∥∥∥
p

≤ Cp‖f‖p,

for all p ∈ (1,∞).

It is immediate from Lemma 2.1 that we now have (1.7) (note there is no issue
of the constant Cp depending on pj because |pj |(γj)′(ρk+1)(|pj |(γj)′(ρk))−1 ≥ 2).
If we can prove (1.6) then we are done. Indeed, MGj

f ≤
(∑

k |µk − σk|2
)1/2 +

supk |σk∗f |. In Lp norm, the former term is. ‖f‖p by using a standard Rademacher
function argument and the fact that the conclusion of Proposition 1.2 holds with
bounds independent of ε, and the latter term is . ‖f‖p by Proposition 2.2 of
[CChVWWa] and the fact that |µ̂k(0)| . 1.

Before we prove (1.6) in Lemma 2.3 we need the following:

Lemma 2.2. For all j ∈ J \ {1}, the function

t 7−→ P ′′(γ(ρkt))γ′(ρkt)2 + P ′(γ(ρkt))γ′′(ρkt)

is singled-signed on Ik.

Proof. By (2) and (4) of Lemma 1.1, it must be the case that P ′ and P ′′ have the
same sign on Gj . The convexity of γ implies γ′′(ρkt) is nonnegative for t ∈ Ik and
so the result follows. �

Lemma 2.3. If ξ /∈ 4k then |ν̂k(ξ)| . |Akξ|−1.

Proof. Since

(2.2) |σ̂k(ξ)| . |χ̂B(Ak+1ξ)| . |Ak+1ξ|−1 . |Akξ|−1,

we are left to find a decay estimate for µ̂k. Let θ(t) = ρktξ1+P (γ(ρkt))ξ2 for t ∈ Ik.
Suppose first that |ξ1| > 4|pj |(γj)′(ρk+1)|ξ2|. Then, by (1.2),

|θ′(t)| ≥ ρk|ξ1| − |P ′(γ(ρkt))|γ′(ρkt)ρk|ξ2| ≥ ρk|ξ1| − 2|pj |(γj)′(ρkt)ρk|ξ2| & ρk|ξ1|.
Now θ′′(t) = [P ′′(γ(ρkt))γ′(ρkt)2 +P ′(γ(ρkt))γ′′(ρkt)]ρ2kξ2. For any j 6= 1, Lemma
2.2 implies that θ′′ is singled-signed on Ik and therefore we have that θ′ is monotone
on Ik. We now invoke van der Corput’s lemma (see [S]) for these j’s to get |µ̂k(ξ)| .
(ρk|ξ1|)−1 . |Akξ|−1, where the last inequality follows from (0.2). The situation
for j = 1 will be dealt with momentarily.
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If now |ξ1| < 1
4 |pj |(γ

j)′(ρk)|ξ2| then we use (1.2) to get

|θ′(t)| ≥ 1
2
|pj |(γj)′(ρkt)ρk|ξ2| − ρk|ξ1|

≥ 1
4
|pj |(γj)′(ρkt)ρk|ξ2| ≥

1
4
|pj |(γj)′(ρk)ρk|ξ2|.

Another application of van der Corput’s lemma and then (0.2) gives

|µ̂k(ξ)| . (|pj |γ(ρk)j−1γ′(ρk)ρk|ξ2|)−1 . |Akξ|−1,

which completes the proof for j 6= 1.
For j = 1 we again begin with |ξ1| > 4|p1|γ′(ρk+1)|ξ2|. Of course we still get

|θ′(t)| & ρk|ξ1| for t ∈ Ik. Using this and integration by parts (which is how the
standard proof of van der Corput’s lemma proceeds),

|µ̂k(ξ)| . (ρk|ξ|)−1 +
∫
Ik

|θ′′(t)|
θ′(t)2

dt.

Note
∫
Ik
|θ′′(t)|/θ′(t)2 dt is less than∫

Ik

ρ2k|ξ2||P ′(γ(ρkt))|γ′′(ρkt)
θ′(t)2

dt+
∫
Ik

ρ2k|ξ2||P ′′(γ(ρkt))|γ′(ρkt)2

θ′(t)2
dt =: α1 + α2.

For α1 we introduce φ(t) = ρkt|ξ1|+ |p1|γ(ρkt)|ξ2| for t ∈ Ik. Note, φ′(t) ∼ ρk|ξ1| .
|θ′(t)| and, again using (1.2), we see that

α1 .
∫
Ik

φ′′(t)
φ′(t)2

dt . (ρk|ξ1|)−1.

For α2, first we write

α2 ≤
∫
Ik

ρk|P ′′(γ(ρkt))|γ′(ρkt)γ
′(ρk+1)ρk|ξ2|
θ′(t)2

dt . (|p1|ρk|ξ1|)−1

∫
G1

|P ′′(s)| ds.

Suppose P ′′ ≥ 0 on [s1, s2] ⊆ G1. Then
∫
[s1,s2]

|P ′′(s)| ds = P ′(s2) − P ′(s1) . |p1|
by Lemma 1.1. Similarly if P ′′ < 0 on [s̃1, s̃2] ⊆ G1. Since G1 splits into . 1 disjoint
such intervals, we get α2 . (ρk|ξ1|)−1. Now, (0.2) implies (ρk|ξ1|)−1 . |Akξ|−1, so
we have |µ̂k(ξ)| . |Akξ|−1 in the case |ξ1| > 4|p1|γ′(ρk+1)|ξ2|.

Finally, suppose |ξ1| < 1
4 |p1|γ′(ρk)|ξ2|. Yet another application of (1.2) gives

|θ′(t)| ≥ 1
4
|p1|γ′(ρkt)ρk|ξ2| ≥

1
4
|p1|γ′(ρk)ρk|ξ2|,

for t ∈ Ik. With α1, α2, and φ as above we have φ′(t) ∼ |p1|γ′(ρkt)ρk|ξ2| . |θ′(t)|.
The same argument used previously for α1 gives α1 . (|p1|γ′(ρk)ρk|ξ2|)−1. Also

α2 .
∫
Ik

ρk|P ′′(γ(ρkt))|γ′(ρkt) 1
|p1|γ′(ρkt)ρk|ξ2|

dt

. (|p1|γ′(ρk)ρk|ξ2|)−1

∫
G1

|p1|−1|P ′′(s)| ds . (|p1|γ′(ρk)ρk|ξ2|)−1.

By (0.2) it follows that |µ̂k(ξ)| . (|p1|γ′(ρk)ρk|ξ2|)−1 . |Akξ|−1, and this completes
the proof of Lemma 2.3. �

Finally, for HGj we apply Proposition 1.2 with Ak and 4k unchanged, and νk
equal to Hk. Since (1.5) is true, we only need check (1.6). Firstly, if γ is even then
this is almost immediate from the work done in the proof of Lemma 2.3. Indeed,
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this and a standard integration by parts argument gives us the decay for the integral
over Ik, while the integral over −Ik is simply a reflection in the vertical axis of the
integral over Ik. For odd γ, we claim that Lemma 2.2 holds on −Ik as well. To see
this, simply observe that P ′ and P ′′ have opposing signs on −Gj , by (2) and (4)
of Lemma 1.1, and couple this with the fact that γ′′ ≤ 0 on (−∞, 0). Now, (1.6)
will follow if we carry out the argument used in the proof of Lemma 2.3 and the
standard integration by parts argument just mentioned. This completes the proof
of Theorem 0.8.

3. The hypersurface

We again decompose (0,∞) as in (1.1). If HDk
and MDk

are defined in the
analogous way, then∫

|y|∈γ−1(Dk)

|K(y)| dy .
∫
Sd−1

|K(ω)|
∫
r∈γ−1(Dk)

dr

r
dσ(ω) . 1,

and therefore these operators are bounded on Lp. So we fix j ∈ J and turn our
attention to showing HGj

and MGj
are Lp bounded operators. Taking ρ := d + 2

and Ik as before, define Hk and µk by:

〈Hk, ψ〉 :=
∫
|y|∈Ik

ψ(ρky, P (γ(ρk|y|)))K(y) dy,

〈µk, ψ〉 :=
∫
|y|∈Ik

ψ(ρky, P (γ(ρk|y|))) dy,

for ψ ∈ S(Rd+1). Also, put Ak := A(ρk) where, for t > 0, A(t) is the d+ 1 by d+ 1
diagonal matrix with (r, r)-entry equal to |pj |γ(t)j when r = d+1, and t otherwise.

Lemma 3.1. |Ĥk(ξ)|+ |µ̂k(ξ)| . |Akξ|(1−d)/2 for ξ 6= 0.

Proof. We just prove the decay estimate for Ĥk because the corresponding result
for µ̂k can be proved in the same way. If ξ = (ξ′, ξd+1) then

Ĥk(ξ) =
∫
|y|∈Ik

ei(ρ
ky.ξ′+P (γ(ρk|y|))ξd+1)K(y) dy

=
∫
r∈Ik

eiP (γ(ρkr))ξd+1

∫
Sd−1

eiρ
krω.ξ′K(ω) dσ(ω)

dr

r
.

It is well known (see, for example [S]) that because K is smooth away from the
origin, for r ∈ Ik,∣∣∣∣∫

Sd−1
eiρ

krξ′.ωK(ω) dσ(ω)
∣∣∣∣ . (ρkr|ξ′|)(1−d)/2 . (ρk|ξ′|)(1−d)/2.

Therefore the claim follows for |pj |γ(ρk)j |ξd+1| ≤ 4ρk|ξ′|. Suppose then that
|pj |γ(ρk)j |ξd+1| ≥ 4ρk|ξ′|. Fix ω ∈ Sd−1 and let θ(r) = ρkrω.ξ′ + P (γ(ρkr))ξd+1

for r ∈ Ik. Then (1.2) and (0.2) imply

|θ′(r)| ≥ 1
2
|pj |(γj)′(ρkr)ρk|ξd+1| − ρk|ξ′| & |pj |γ(ρk)j |ξd+1|.

It follows that ∣∣∣∣∫
r∈Ik

eiθ(r)
dr

r

∣∣∣∣ . (|pj |γ(ρk)j |ξd+1|)−1 . |Akξ|−1
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(as in the proof of Lemma 2.3 this follows by van der Corput’s lemma for j ∈ J\{1},
and the substitute argument for j = 1). This completes the proof of Lemma 3.1. �

We can now use Proposition 1.2 (or a weaker form, given that we in fact have
uniform decay estimates) to complete the proof of Theorem 0.9.
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