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HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS

JONATHAN BENNETT, NEAL BEZ, ANTHONY CARBERY, AND DIRK HUNDERTMARK

Abstract. Our main result is that for d = 1, 2 the classical Strichartz norm

‖eis∆f‖
L

2+4/d
s,x (R×Rd)

associated to the free Schrödinger equation is nondecreasing as the initial datum f evolves
under a certain quadratic heat-flow.

1. Introduction

For d ∈ N let the Fourier transform f̂ : Rd → C of a Lebesgue integrable function f on Rd
be given by

f̂(ξ) =
1

(2π)d/2

∫
Rd
e−ix·ξf(x) dx.

For each s ∈ R the Fourier multiplier operator eis∆ is defined via the Fourier transform by

êis∆f(ξ) = e−is|ξ|
2
f̂(ξ),

for all f belonging to the Schwartz class S(Rd) and ξ ∈ Rd. Thus for each f ∈ S(Rd) and
x ∈ Rd,

eis∆f(x) =
1

(2π)d/2

∫
Rd
ei(x·ξ−s|ξ|

2)f̂(ξ) dξ.

By an application of the Fourier transform in x it is easily seen that eis∆f(x) solves the
Schrödinger equation

(1.1) i∂su = −∆u,

with initial datum u(0, x) = f(x). It is well known that the above solution operator eis∆

extends to a bounded operator from L2(Rd) to LpsL
q
x(R × Rd) if and only if (d, p, q) is

Schrödinger admissible; i.e. there exists a finite constant Cp,q such that

(1.2) ‖eis∆f‖LpsLqx(R×Rd) ≤ Cp,q‖f‖L2(Rd)

if and only if

(1.3) p, q ≥ 2, (d, p, q) 6= (2, 2,∞) and
2
p

+
d

q
=
d

2
.

For p = q = 2+4/d, this classical inequality is due to Strichartz [13] who followed arguments
of Stein and Tomas [14]. For p 6= q the reader is referred to [11] for historical references and
a full treatment of (1.2) for suboptimal constants Cp,q.

The first and second authors were supported by EPSRC grant EP/E022340/1.
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2 JONATHAN BENNETT, NEAL BEZ, ANTHONY CARBERY, AND DIRK HUNDERTMARK

Recently Foschi [9] and independently Hundertmark and Zharnitsky [10] showed that in the
cases where one can “multiply out” the Strichartz norm

(1.4) ‖eis∆f‖LpsLqx(R×Rd),

that is, when q is an even integer which divides p, the sharp constants Cp,q in the above in-
equalities are obtained by testing on isotropic centred gaussians. (These authors considered
p = q only.) The main purpose of this paper is to highlight a startling monotonicity property
of such Strichartz norms as the function f evolves under a certain quadratic heat-flow.

Theorem 1.1. Let f ∈ L2(Rd). If (d, p, q) is Schrödinger admissible and q is an even
integer which divides p then the quantity

(1.5) Qp,q(t) := ‖eis∆(et∆|f |2)1/2‖LpsLqx(R×Rd)

is nondecreasing for all t > 0; i.e. Qp,q is nondecreasing in the cases (1, 6, 6), (1, 8, 4) and
(2, 4, 4).

The heat operator et∆ is of course defined to be the Fourier multiplier operator with mul-
tiplier e−t|ξ|

2
, and so

et∆|f |2 = Ht ∗ |f |2,
where the heat kernel Ht : Rd → R is given by

(1.6) Ht(x) =
1

(4πt)d/2
e−|x|

2/4t.

By making an appropriate rescaling one may rephrase the above result in terms of “sliding
gaussians” in the following way. For f ∈ L2(Rd) let u : (0,∞) × Rd → R be given by
u(t, x) = Ht ∗ |f |2(x) and ũ : (0,∞)× Rd → R be given by

ũ(t, x) = t−du(t−2, t−1x) =
1

(4π)d/2

∫
Rd
e−

1
4 |x−tv|

2
|f(v)|2 dv.

We interpret ũ as a superposition of translates of a fixed gaussian which simultaneously
slide to the origin as t tends to zero. By a simple change of variables it follows that

(1.7) Qp,q(t−2) = ‖eis∆(ũ(t, ·)1/2)‖LpsLqx(R×Rd).

The reader familiar with the standard wave-packet analysis in the context of Fourier exten-
sion estimates may find it more enlightening to interpret Theorem 1.1 via this rescaling.

The claimed monotonicity ofQp,q yields the sharp constant Cp,q in (1.2) as a simple corollary.
To see this, suppose that the function f is bounded and has compact support. Then, by
rudimentary calculations,

lim
t→0

Qp,q(t) = ‖ eis∆|f | ‖LpsLqx(R×Rd)

which, by virtue of the fact that q is an even integer which divides p, is greater than or
equal to ‖eis∆f‖Lps(Lqx(Rd)). Furthermore, because of (1.7) it follows that

lim
t→∞

Qp,q(t) = ‖eis∆(H1/2
1 )‖LpsLqx(R×Rd)‖f‖L2(Rd),

where H1 is the heat kernel at time t = 1. Therefore Theorem 1.1 gives the sharp constant
Cp,q in (1.2) for the triples (1, 6, 6), (1, 8, 4) and (2, 4, 4), and shows that gaussians are
maximisers. In particular, if

Cp,q := sup{‖eis∆f‖LpsLqx(R×Rd) : ‖f‖L2(Rd) = 1}
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then C6,6 = 12−1/12, C8,4 = 2−1/4 and C4,4 = 2−1/2. As we have already noted, C6,6 and
C4,4 were found recently by Foschi [9] and independently Hundertmark and Zharnitsky [10].
In the (1, 8, 4) case, we shall see in the proof of Theorem 1.1 below that the monotonicity
(and hence sharp constant) follows in a cheap way from the (2, 4, 4) case.

Heat-flow methods have already proved effective in treating certain d-linear analogues of
the Strichartz estimate (1.2); see Bennett, Carbery and Tao [6]. Also intimately related (as
we shall see) are the works of Carlen, Lieb, and Loss [8] and Bennett, Carbery, Christ and
Tao [5] in the setting of the multilinear Brascamp–Lieb inequalities.

The proof of Theorem 1.1 is contained in Section 2. We discuss some further results in
Section 3. In particular we show that the Strichartz norm is nondecreasing under a certain
quadratic Mehler-flow and observe that one may relax the quadratic nature of the heat-flow
in Theorem 1.1 by inserting a mitigating factor which is a power of t. We also consider
extensions of Theorem 1.1 to higher dimensions.

2. Proof of Theorem 1.1

The idea behind the proof of Theorem 1.1 is simply to express the Strichartz norm

‖eis∆f‖LpsLqx(R×Rd)

in terms of quantities which are already known to be monotone under the heat-flow that we
consider. As we shall see, this essentially amounts to bringing together the Strichartz-norm
representation formulae of Hundertmark and Zharnitsky [10] and the following heat-flow
monotonicity property inherent in the Cauchy–Schwarz inequality.

Lemma 2.1. For n ∈ N and nonnegative integrable functions f1 and f2 on Rn the quantity

Λ(t) :=
∫

Rn
(et∆f1)1/2(et∆f2)1/2

is nondecreasing for all t > 0.

Proof. Let 0 < t1 < t2. If Ht denotes the heat kernel on Rn given by (1.6) then,

Λ(t1) =
∫

Rn
(Ht1 ∗ f1)1/2(Ht1 ∗ f2)1/2

=
∫

Rn
Ht2−t1 ∗ ((Ht1 ∗ f1)1/2(Ht1 ∗ f2)1/2)

=
∫

Rn

∫
Rn

(Ht2−t1(x− y)Ht1 ∗ f1(y))1/2(Ht2−t1(x− y)Ht1 ∗ f2(y))1/2 dydx

≤
∫

Rn
(Ht2−t1 ∗ (Ht1 ∗ f1))1/2(Ht2−t1 ∗ (Ht1 ∗ f2))1/2

= Λ(t2),

where we have used the Cauchy–Schwarz inequality on L2(Rn) and the semigroup property
of the heat kernel. �
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The above proof of Lemma 2.1 originates in work of Ball [1] and was developed further in
[5]. An alternative method of proof in [8] and [5] which is based on the divergence theorem
produces the explicit formula

(2.1) Λ′(t) =
1
4

∫
Rn
|∇(log et∆f1)−∇(log et∆f2)|2(et∆f1)1/2(et∆f2)1/2

for each t > 0 provided f1 and f2 are sufficiently well-behaved (such as bounded with
compact support). We remark in passing that the Cauchy–Schwarz inequality on L2(Rn)
follows from Lemma 2.1 by comparing the limiting values of Λ(t) for t at zero and infinity.

The next lemma is an observation of Hundertmark and Zharnitsky [10] who showed that
multiplied out expressions for the Strichartz norm in the (1, 6, 6) and (2, 4, 4) cases have a
particularly simple geometric interpretation.

Lemma 2.2. (1) For nonnegative f ∈ L2(R),

‖eis∆f‖6L6
sL

6
x(R×R) =

1
2
√

3

∫
R3

(f ⊗ f ⊗ f)(X)P1(f ⊗ f ⊗ f)(X) dX

where P1 : L2(R3)→ L2(R3) is the projection operator onto the subspace of functions on R3

which are invariant under the isometries which fix the direction (1, 1, 1).

(2) For nonnegative f ∈ L2(R2),

‖eis∆f‖4L4
sL

4
x(R×R2) =

1
4

∫
R4

(f ⊗ f)(X)P2(f ⊗ f)(X) dX

where P2 : L2(R4)→ L2(R4) is the projection operator onto the subspace of functions on R4

which are invariant under the isometries which fix the directions (1, 0, 1, 0) and (0, 1, 0, 1).

Proof of Theorem 1.1. We begin with the case where (p, q, d) is equal to (1, 6, 6). For func-
tions G ∈ L2(R3) we may write

(2.2) P1G(X) =
∫
O

G(ρX) dH(ρ)

where O is the group of isometries on R3 which coincide with the identity on the span of
(1, 1, 1) and dH denotes the right-invariant Haar probability measure on O.

If, for f ∈ L2(R), we let F := f ⊗ f ⊗ f then it is easy to see that

(2.3) et∆|f |2 ⊗ et∆|f |2 ⊗ et∆|f |2 = et∆|F |2

because, in general, the heat operator et∆ commutes with tensor products. It is also easy
to check that for each isometry ρ on R3,

(2.4) (et∆|f |2 ⊗ et∆|f |2 ⊗ et∆|f |2)(ρ ·) = et∆|Fρ|2

where Fρ := F (ρ ·). In (2.3) and (2.4) the Laplacian ∆ acts in the number of variables
dictated by context. Therefore, by Lemma 2.2(1),

Q6,6(t)6 =
1

2
√

3

∫
O

∫
R3

(et∆|F |2)1/2(X)(et∆|Fρ|2)1/2(X) dXdH(ρ)

and, by Lemma 2.1 and the nonnegativity of the measure dH, it follows that Q6,6(t) is
nondecreasing for each t > 0.
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For the (2, 4, 4) case, we use a representation of the form (2.2) for the projection operator P2

where the averaging group O is replaced by the group of isometries on R4 which coincide with
the identity on the span of (1, 0, 1, 0) and (0, 1, 0, 1). Of course, the analogous statements
to (2.3) and (2.4) involving two-fold tensor products hold. Hence the nondecreasingness of
Q4,4 follows from Lemma 2.2(2) and Lemma 2.1.

Finally, for the (1, 8, 4) case we observe that

‖eis∆(et∆|f |2)1/2‖2L8
sL

4
x(R×R) = ‖eis∆(et∆(|f |2 ⊗ |f |2))1/2‖L4

sL
4
x(R×R2)

because both solution operators eis∆ and et∆ commute with tensor products. Therefore,
the claimed monotonicity in the (1, 8, 4) case follows from the corresponding claim in the
(2, 4, 4) case. This completes the proof of Theorem 1.1. �

It is transparent from the proof of Theorem 1.1 and (2.1) how one may obtain an explicit
formula for Q′p,q(t) provided q is an even integer which divides p and f is sufficiently well-
behaved (such as bounded with compact support). For example, using the notation used in
the above proof of Theorem 1.1,

d

dt
(Q6,6(t)6) =

1
8
√

3

∫
O

∫
R3
|V (t,X)− ρtV (t, ρX)|2(et∆|F |2)1/2(et∆|Fρ|2)1/2 dXdH(ρ)

where V (t, ·) denotes the time dependent vector field on R3 given by

V (t,X) = ∇(log et∆|F |2)(X)

and ρt denotes the transpose of ρ.

3. Further results

3.1. Mehler-flow. The operator L := ∆ − 〈x,∇〉 generates the Mehler semigroup etL

(sometimes called the Ornstein–Uhlenbeck semigroup) given by

etLf(x) =
∫

Rd
f(e−tx+

√
1− e−2ty) dγd(y)

for suitable functions f on Rd, where dγd is the gaussian probability measure on Rd given
by

dγd(y) =
1

(2π)d/2
e−|y|

2/2dy.

Naturally, u(t, ·) := etLf satisfies the evolution equation

∂tu = Lu

with initial datum u(0, x) = f(x). It will be convenient to restrict our attention to functions
f which are bounded and compactly supported.

The purpose of this remark is to highlight that when (d, p, q) is one of (1, 6, 6), (1, 8, 4)
or (2, 4, 4) the Strichartz norm also exhibits a certain monotonicity subject to the input
evolving according to a quadratic Mehler-flow.
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Theorem 3.1. Suppose f is a bounded and compactly supported function on Rd. If (d, p, q)
is Schrödinger admissible and q is an even integer which divides p then the quantity

Q(t) := ‖eis∆(e−
1
2 |·|

2
etL|f |2)1/2‖LpsLqx(R×Rd)

is nondecreasing for all t > 0.

As a consequence of Theorem 3.1, we may again recover sharp forms of the Strichartz esti-
mates in (1.2) for such exponents by considering the limiting values of Q(t) as t approaches
zero and infinity. In particular, since

etL|f |2(x) =
∫

Rd
|f |2(e−tx+

√
1− e−2ty) dγd(y)

it follows that, for each x ∈ Rd, etL|f |2(x) tends to
∫

Rd |f |
2 dγd as t tends to infinity. Thus,

the monotonicity of Q implies that

‖eis∆(e−
1
4 |·|

2
|f |)‖LpsLqx(R×Rd) ≤ ‖eis∆(e−

1
4 |·|

2
)‖LpsLqx(R×Rd)

(∫
Rd
|f |2 dγd

)1/2

for each bounded and compactly supported function f on Rd. Thus,

‖eis∆g‖LpsLqx(R×Rd) ≤ ‖eis∆
(

1
(2π)d/2

e−
1
2 |·|

2)1/2‖LpsLqx(R×Rd)‖g‖L2(Rd)

for each g ∈ L2(Rd).

The first key ingredient in the proof of Theorem 3.1 is to observe that an analogue of Lemma
2.1 holds for Mehler-flow.

Lemma 3.2. Let n ∈ N and let f1 and f2 be nonnegative, bounded and compactly supported
functions on Rn. Then the quantity

Λ(t) :=
1

(2π)n/2

∫
Rn

(e−
1
2 |·|

2
etLf1)1/2(e−

1
2 |·|

2
etLf2)1/2

is nondecreasing for all t > 0.

Proof. Notice that

e
log 1√

1−2T
L
fj

(
x√

1− 2T

)
= eT∆fj(x) = HT ∗ fj(x)

for each 0 < T < 1/2. Thus, for 0 < T1 < T2 < 1/2 we have

Λ
(

log
1√

1− 2T1

)
=
∫

Rn
(f1 ∗HT1)1/2(f2 ∗HT1)1/2H1/2−T1

=
∫

Rn
(f1 ∗HT1)1/2(f2 ∗HT1)1/2(HT2−T1 ∗H1/2−T2)

=
∫

Rn
[HT2−T1 ∗ ((f1 ∗HT1)1/2(f2 ∗HT1)1/2)]H1/2−T2

using the semigroup property and evenness of the heat kernel. As in the proof of Lemma
2.1 it follows from the Cauchy–Schwarz inequality and another application of the semigroup
property of the heat kernel that

HT2−T1 ∗ ((f1 ∗HT1)1/2(f2 ∗HT1)1/2) ≤ (f1 ∗HT2)1/2(f2 ∗HT2)1/2,
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and thus

Λ
(

log
1√

1− 2T1

)
≤ Λ

(
log

1√
1− 2T2

)
.

Hence, Λ(t1) ≤ Λ(t2) for 0 < t1 < t2. �

As with Lemma 2.1, it is possible to prove Lemma 3.2 in a way which produces an explicit
formula for Λ′(t) for each t > 0 from which the monotonicity of Λ is manifest. To see this,
let uj : (0,∞)× Rn → R be given by

(3.1) uj(t, x) = e−
1
2 |x|

2
etLfj(x) = e−

1
2 |x|

2
∫

Rn
fj(e−tx+

√
1− e−2ty) dγn(y)

for j = 1, 2. It is straightforward to check that

∂tuj = ∆uj + 〈x,∇uj〉+ nuj

and furthermore
∂t(log uj) = div(vj) + |vj |2 + 〈x, vj〉+ n,

where vj := ∇(log uj). Therefore,
Λ′(t) = I + II

where
I :=

1
(2π)n/2

∫
Rn

(〈x, 1
2v1 + 1

2v2〉+ n)(t, x) u1(t, x)1/2u2(t, x)1/2 dx

and

II :=
1

2(2π)n/2

∫
Rn

(div(v1) + div(v2) + |v1|2 + |v2|2)(t, x) u1(t, x)1/2u2(t, x)1/2 dx.

Since
I =

1
(2π)n/2

∫
Rn

div(u1(t, x)1/2u2(t, x)1/2x) dx

it follows from the divergence theorem that I vanishes. Using the fact that each fj is bounded
with compact support it follows from the explicit formula for uj in (3.1) that vj(t, x) grows
at most polynomially in x for each fixed t > 0 and consequently

∫
Rn div(u1/2

1 u
1/2
2 vj) vanishes

by the divergence theorem. Therefore, for each t > 0,

Λ′(t) =
1

4(2π)n/2

∫
Rn
|v1(t, x)− v2(t, x)|2u1(t, x)1/2u2(t, x)1/2 dx,

which is manifestly nonnegative.

The above argument which proves Lemma 3.2 based on the divergence theorem is very much
in the spirit of the heat-flow monotonicity results in [8] and [5] and naturally extends to the
setting of the geometric Brascamp–Lieb inequality. In particular, for j = 1, . . . ,m suppose
that pj ≥ 1 and Bj : Rn → Rnj is a linear mapping such that B∗jBj is a projection and∑m
j=1

1
pj
B∗jBj = IRn . Then the quantity

1
(2π)n/2

∫
Rn

m∏
j=1

(e−
1
2 |Bjx|

2
(etLfj)(Bjx))1/pj dx =

∫
Rn

m∏
j=1

(etLfj)(Bjx)1/pj dγn(x)

is nondecreasing for each t > 0 provided each fj is a nonnegative, bounded and compactly
supported function on Rnj . This is due to Barthe and Cordero-Erausquin [2] in the case
where each Bj has rank one. A modification of the argument gives the general rank case
(see [7] for closely related results).
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By following the same argument employed in our proof of Theorem 1.1, to conclude the proof
of Theorem 3.1 it suffices to note that Mehler-flow appropriately respects tensor products
and isometries. In particular we need that if F is the m-fold tensor product of f then

(3.2)
m⊗
j=1

e−
1
2 |·|

2
etL|f |2 = e−

1
2 |·|

2
etL|F |2

and, for each isometry ρ on (Rd)m,

(3.3)
m⊗
j=1

e−
1
2 |·|

2
etL|f |2(ρ ·) = e−

1
2 |·|

2
etL|Fρ|2

where Fρ := F (ρ ·). Here, the operators | · | and L are acting on the number of variables
dictated by context. The verification of (3.2) and (3.3) is an easy exercise.

3.2. Mitigating powers of t. It is possible to relax the quadratic nature of the heat-flow
in the quantity Qp,q in Theorem 1.1 by inserting a mitigating factor which is a well-chosen
power of t.

Theorem 3.3. Suppose that (p, q, d) is Schrödinger admissible and q is an even integer
which divides p. If f is a nonnegative integrable function on Rd and α ∈ [1/2, 1] then the
quantity

td(α−1/2)/2‖eis∆(et∆f)α‖LpsLqx(R×Rd).

is nondecreasing for each t > 0.

By [5], we have that Lemma 2.1 generalises to the statement that

(3.4) tn(α−1/2)

∫
Rn

(et∆f1)α(et∆f2)α

is nondecreasing for all t > 0 provided n ∈ N, α ∈ [1/2, 1] and f1, f2 are nonnegative
integrable functions on Rn. Thus Theorem 3.3 follows by the same argument in our proof
of Theorem 1.1.

3.3. Higher dimensions. Theorem 1.1 raises obvious questions about higher dimensional
analogues and consequently the potential of our approach to prove the sharp form of (1.2)
in all dimensions (at least for nonnegative initial data f). Recently, Shao [12] has shown
that for non-endpoint Schrödinger admissible triples (p, q, d),

sup{‖eis∆f‖LpsLqx(R×Rd) : ‖f‖L2(Rd) = 1}
is at least attained, although does not determine the explicit form of an extremiser. There is
some anecdotal evidence in [4] to suggest that Theorem 1.1 may not extend to all Schrödinger
admissible triples (d, p, q). Nevertheless, we end this section with a discussion of some results
in this direction which we believe to be of some interest.

We shall consider the case p = q = 2 + 4/d and it will be convenient to denote this number
by p(d). Since p(d) is not an even integer for d ≥ 3, one possible approach to the question
of monotonicity of Qp(d),p(d), given by (1.5), is to attempt to embed the Strichartz norm

|||f |||p(d) := ‖eis∆f‖
L

2+4/d
s,x (R×Rd)
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in a one-parameter family of norms ||| · |||p which are appropriately monotone under a
quadratic flow for p ∈ 2N, and for which the resulting monotonicity formula may be “ex-
trapolated”, in a sign preserving way, to p = p(d). Such an approach has proved effective
in the context of the general Brascamp–Lieb inequalities, and was central to the approach
to the multilinear Kakeya and Strichartz inequalities in [6].

Our analysis for d = 1, 2 suggests (albeit rather indirectly) a natural candidate for such a
family of norms. For each d ∈ N and p > p(d), we define a norm ||| · |||p on S(Rd) by

|||f |||pp =
(p(d)/π)d/2

(2π)d+2

∫
Rd

∫
Rd

∫ ∞
0

∫
R

∣∣∣∣∫
Rd
e−|z−

√
ζξ|2ei(x·ξ−s|ξ|

2)f̂(ξ) dξ
∣∣∣∣p ζν−1

Γ(ν)
dsdζdzdx,

where ν = d(p− p(d))/4. For ||| · |||p we have the following.

Theorem 3.4. As p tends to p(d) the norm |||f |||p converges to the Strichartz norm
‖eis∆f‖

L
p(d)
s,x

for each f belonging to the Schwartz class on Rd. Additionally, if α ∈ [1/2, 1]

and f is a nonnegative integrable function on Rd then

Q̃α,p(t) := td(α−1/2)/2|||(et∆f)α|||p
is nondecreasing for all t > 0 whenever p is an even integer.

Remarks. (1) This “modified Strichartz norm” |||f |||p is related in spirit to the norm

‖Iβ eis∆f‖Lps,x(R×Rd),

where Iβ denotes the fractional integral of order β = d(p − p(d))/2p. Although it is true
that for all p ≥ p(d),

‖Iβ eis∆f‖Lps,x(R×Rd) ≤ C‖f‖L2(Rd)

for some finite constant C, the desired heat-flow monotonicity for p ∈ 2N is far from apparent
for these norms.

(2) Both the Strichartz norm and the modified Strichartz norms ||| · |||p are invariant under
the Fourier transform; that is

(3.5) ‖eis∆f̂‖
L
p(d)
s,x (R×Rd)

= ‖eis∆f‖
L
p(d)
s,x (R×Rd)

for all d ∈ N and

(3.6) |||f̂ |||p = |||f |||p
for all p > p(d) and d ∈ N. This observation follows by direct computation and simple
changes of variables; for the Strichartz norm it was noted for d = 1, 2 in [10]. We note that
in the proof of Theorem 3.4 below we use the invariance in (3.6) for even integers p which
(as we will see) follows from Parseval’s theorem.

(3) For every integer m ≥ 2 and in all dimensions d ≥ 1, a corollary to the case α = 1/2 of
Theorem 3.4 is the following sharp inequality,

|||f |||2m ≤ Cd,m‖f‖L2(Rd),

where the constant Cd,m is given by

(3.7) C2m
d,m =

πν

2ν+1mdΓ(ν + 1)

(
p(d)

2

)d/2
.

Here ν = d(2m− p(d))/4 as before.
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(4) It is known that for nonnegative integrable functions f on Rd the quantity

‖ ̂(et∆f)1/p‖Lp′ (Rd)

is nondecreasing for each t > 0 provided the conjugate exponent p′ is an even integer; this
follows from [5] and [3]. However, tying in with our earlier comment on the extension of
Theorem 1.1 to all Schrödinger admissible exponents, in [4] we show that whenever p′ > 2
is not an even integer there exists a nonnegative integrable function f such that Q(t) is
strictly decreasing for all sufficiently small t > 0.

Proof of Theorem 3.4. To see the claimed limiting behaviour of |||f |||p as p tends to p(d)
observe that

(3.8) lim
ν→0

1
Γ(ν)

∫ ∞
0

φ(ν, ζ)ζν−1 dζ = φ(0, 0)

for any φ on [0,∞)× [0,∞) satisfying certain mild regularity conditions. For example, (3.8)
holds if φ is continuous at the origin and there exist constants C, ε > 0 such that, locally
uniformly in ν, one has |φ(ν, ζ) − φ(ν, 0)| ≤ C|ζ|ε for all ζ in a neighbourhood of zero and
|φ(ν, ζ)| ≤ C|ζ|−ε for all ζ bounded away from a neighbourhood of zero. One can check
that standard estimates (for example, Strichartz estimates of the form (1.2) for compactly
supported functions) imply that for f belonging to the Schwartz class on Rd,

φ(ν, ζ) =
∫

Rd

∫
Rd

∫
R

∣∣∣∣∫
Rd
e−|z−

√
ζξ|2ei(x·ξ−s|ξ|

2)f̂(ξ) dξ
∣∣∣∣p dsdxdz

satisfies such conditions.

We now turn to the monotonicity claim, beginning with some notation. Suppose that
p = 2m for some positive integer m. For a nonnegative f ∈ S(Rd) let F : Rmd → R be
given by F (X) = ⊗mj=1f(X) where X = (ξ1, . . . , ξm) ∈ (Rd)m ∼= Rmd. Next we define
the subspace W of Rmd to be the linear span of 11, . . . ,1m where for each 1 ≤ j ≤ d,
1j := (ej , . . . , ej)/

√
m and ej denotes the jth standard basis vector of Rd. For a vector

X ∈ Rmd we denote by XW and XW⊥ the orthogonal projections of X onto W and W⊥

respectively. Now,

|||f |||2m2m = 1
2d+1π

(p(d)
mπ

)d/2 ∫
δ(XW − YW )δ(|X|2 − |Y |2)K(X,Y )F (X)F (Y ) dXdY,

where we integrate over Rmd × Rmd and

K(X,Y ) =
∫ ∞

0

ζν−1

Γ(ν)
e−ζ(|X|

2+|Y |2)

∫
Rd
e
√
mζz·(XW+YW )e−

m
2 |z|

2
dzdζ

=
(

2π
m

)d/2 ∫ ∞
0

ζν−1

Γ(ν)
e−ζ(|X|

2+|Y |2)e
1
2 ζ|XW+YW |2 dζ

for (X,Y ) ∈ Rmd × Rmd. Thus, on the support of the delta distributions (XW = YW and
|X|2 = |Y |2) we have

K(X,Y ) =
(

2π
m

)d/2 ∫ ∞
0

ζν−1

Γ(ν)
e−2ζ(|X|2−|XW |2) dζ

= 1
2ν

(
2π
m

)d/2 1
(|X|2 − |XW |2)ν

= 1
2ν

(
2π
m

)d/2 1
|XW⊥ |2ν

.
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Therefore

(3.9) |||f |||2m2m = πν

2ν+1mdΓ(ν+1)
(p(d)

2 )d/2
∫

Rmd
F (X)PF (X) dX,

where P is given by

PF (X) = Γ(ν+1)
πν+1

1
|XW⊥ |2ν

∫
Rmd

δ(XW − YW )δ(|X|2 − |Y |2)F (Y ) dY.

Using polar coordinates in W⊥ in the above integral and recalling that ν = d(2m− p(d))/4
identifies P as the orthogonal projection onto functions on Rmd which are invariant under
the action of O, the group of isometries on Rmd which coincide with the identity on W ; i.e.

PF (X) =
∫
O

F (ρX) dH(ρ),

where dH denotes the right-invariant Haar probability measure on O.

Finally, applying the representation of |||f |||2m2m in (3.9) to the quantity Q̃α,2m, and appealing
to the nondecreasingness of the quantity in (3.4), we conclude that Q̃α,2m(t) is nondecreasing
for all t > 0 and all α ∈ [1/2, 1]. This completes the proof of Theorem 3.4. �
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