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Abstract Metabolomics, the analysis of the metabolite
profile in body fluids or tissues, is being applied to the
analysis of a number of different diseases as well as being used
in following responses to therapy. While genomics involves
the study of gene expression and proteomics the expression of
proteins, metabolomics investigates the consequences of the
activity of these genes and proteins. There is good reason to
think that metabolomics will find particular utility in the
investigation of inflammation, given the multi-layered
responses to infection and damage that are seen. This may
be particularly relevant to eye disease, which may have tissue
specific and systemic components. Metabolomic analysis can
inform us about ocular or other body fluids and can therefore
provide new information on pathways and processes involved
in these responses. In this review, we explore the metabolic
consequences of disease, in particular ocular conditions, and
why the data may be usefully and uniquely assessed using the
multiplexed analysis inherent in the metabolomic approach.
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Introduction to metabolomics

Attempts to understand the contribution of individual genes
and environmental triggers to different inflammatory
disease groups have driven many hypothesis-based research
studies. Inherent in this scientific process, however, is the
issue that the selection of a particular hypothesis to
investigate also runs the risk of missing other, perhaps
more complex, interactions which may be of greater
importance.

A novel approach which may allow integration of these
multiple interacting factors which impact on disease is
metabolomics [1]. The general aim of metabolomics is to
identify, measure and interpret the complex time-related
concentration, activity and flux of endogenous metabolites
in cells, tissues and other biosamples such as blood, urine
and saliva. Metabolites include not only small molecules
that are the products and intermediates of metabolism but
also carbohydrates, peptides and lipids, many of which may
also derive from the diet or may be altered in disease. The
approach is highly applicable to human studies and takes
into account the whole spectrum of variables, including
genetic background, diet, drug treatment and environment,
which act together to influence metabolism. Just as
genomics involves the study of gene expression and
proteomics the expression of proteins, metabolomics
investigates the consequences of the activity of these genes
and proteins.

Many diseases, for example, rheumatoid arthritis (RA)
are complex polygenic conditions. In RA there is a strong
contribution of a number of genes, in particular major
histocompatibility complex class II and protein tyrosine
phosphatase PTPN22 [2], but in spite of this, studies on
monozygotic twins indicate that the genetic component
does not account for all of the risk of disease [3]. Other,
non-genetic factors must therefore contribute, for example
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age and infections or the post-translational modification of
arginine to produce citrulline, which promotes autoanti-
bodies in RA patients [4]. One of the other major risk
factors for RA is smoking, and the level of the increased
risk was shown in a study of monozygotic twins [5].
Smoking also plays a significant part in increasing the risk
for age-related macular degeneration [6]. Smoking has
profound effects on the oxidative metabolic environment in
vivo since plasma levels of glutathione (GSH) have been
reported to be 25% lower in smokers than in controls [7],
which could promote oxidative damage to tissues and lead
to widespread changes in metabolism. Diet may play a role
with a recent study suggesting that antioxidant deficiency
may predispose to disease since there was a relationship
between dietary ascorbate and susceptibility to inflamma-
tory polyarthritis [8] while alcohol consumption may be
protective [9, 10]. It may be most appropriate, however, to
view genes and metabolism as inseparably linked when
trying to understand human diseases, and this was
highlighted recently by the observation that metabolic
profiles are highly heritable, at least in the context of
cardiovascular disease [11], suggesting a strong link
between genes and metabolism.

Acquisition of metabolomic data

The importance of the complex array of metabolites in
human physiology has long been recognised, and as early
as 1971 Linus Pauling developed methods based on gas–
liquid chromatography to separate 280 metabolites in
human urine [12]. Recent technical advances in nuclear
magnetic resonance (NMR) and mass spectrometry have
allowed extremely high-density data sets to be constructed
from individuals by examining the changes in hundreds or
thousands of low-molecular-weight metabolites in intact
tissues or biofluids. NMR-based metabolomics offers
several distinct advantages in a clinical setting since it is
relatively quick and can be carried out on standard
preparations of blood cells, serum, plasma, urine or other
body fluids. To maximise sensitivity and minimise the size
of the samples needed, most NMR-based metabolomic
analyses make use of moderately high-field NMR instru-
ments (500 to 800 MHz) often equipped with a cryo-probe,
which minimises the electronic noise in the detection
system, thus maximising signal from sample. Higher
volumes of sample are required for an instrument which
requires the sample to be in the glass tube; however, it is
possible to derive good-quality spectra from 100 μL of
vitreous fluid [13] with such an instrument. Some systems
are now available, which will inject a sample directly into a
sample chamber in the magnet, and these can require as
little as 30 μL of sample, which makes possible the analysis

of less readily available samples. Proteins in serum can
interfere with the quality of the spectrum derived from low-
molecular-weight metabolites, and so removal of these by
filtration can significantly enhance the quality of the NMR
spectrum derived [14]. Separation of samples into hydro-
philic, water-soluble metabolites and those which are
hydrophobic or bound to proteins [14] also allows a
greater depth of information to be derived from a particular
sample.

From the information contained within the data set, it is
possible to establish a relationship between metabolite
levels and cellular responses and a powerful means of
exploring the biochemical consequences of disease [15].
NMR spectra of biofluids are highly complex, containing
signals from hundreds of metabolites that represent many
key biochemical pathways. To make the spectra tractable
for analysis it is usual to segment the spectra into small
regions [16] to allow processing using a number of
statistical approaches. Pattern recognition methods (princi-
pal component and partial least-squares analysis, see
below) allow the complex biofluid/tissue NMR data to be
reduced and analysed quantitatively to provide pattern
recognition maps that can assist in disease classification.
Metabolomic diagnostics can be extremely sensitive for the
detection of low-level damage in a variety of organ systems
and is potentially a powerful new adjunct to conventional
pathological procedures and to assist in functional
genomics problems [17]. The multiplexed analysis inherent
in this approach, which takes into account all metabolite
signals regardless of whether they have been specifically
identified, is able to provide information not available by
other means.

As stated, while genomic and proteomic techniques have
been useful in generating useful data and novel hypotheses,
they are ultimately dependent on a candidate gene/protein
approach, which is costly and time consuming for the study
of significant numbers of patients. In contrast, metabolo-
mics is low cost, reproducible and, with bioinformatic
analysis of the data, easily translated into a clinical test
that could inform future therapy. Furthermore, because a
metabolic profile is summative of all the biochemical
processes occurring in the body at a given time, it makes
no presumption about the relative importance of these
processes and so is more likely than a candidate approach
to be able to highlight differences between disease groups
and to identify changes occurring during therapy. In a
recent paper analysing metabolomics by SWOT (strengths,
weaknesses, opportunities, and threats) strengths included
the ability to identify molecules as the ultimate manifesta-
tion of a biological process, and opportunities included the
identification of predictive biomarkers in disease states
[18]. Weaknesses were defined as lack of comprehensive
databases for metabolite identification although such
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programmes are now available, including the Human
Metabolome Database [19, 20]. A basic point is the ability
of the methodology to discern differences between normal
metabolic homeostasis and changes induced by the disease
state. This has been demonstrated in metabolomic analysis
coupled with mathematical modelling and offers a systems
biology approach that will provide diagnostic biomarkers
in inflammatory conditions [21]. In support of the
potential of metabolomics it has been highlighted for
funding in the recently published roadmap of the US
National Institutes of Health [22].

Analysis of metabolomic data

Principal components analysis (PCA) is a particularly
useful statistical technique for the analysis of complex
datasets such as metabolite or transcript profiles. Although
it was first developed many years ago [23, 24], its
application has become more widespread [25–29] with the
ready availability of personal computers since it provides a
means of data simplification while retaining the main
features of the data. It involves a linear transformation that
chooses a coordinate system such that the greatest variance
by any projection of the data lies on the first axis (principal
component 1 (PC1)), the second greatest variance will be
PC2 etc. PCA reduces the dimensionality in a dataset while
retaining those characteristics that contribute most to
variance. Often the first stage is to standardise the data by
subtracting the mean and dividing by the standard devia-
tion. This sets the centroid of the data as zero. PCA chooses
PC1 as the line that goes through the centroid but
minimises the square of the distance of each point from
that line, so the line goes through the maximum variation of
the data. Each subsequent PC must also go through the
centroid, but must be uncorrelated to PC1, i.e. at right
angles or orthogonal to PC1 axis. PC values can now be
compared with each other.

Partial least-squares analysis discriminant analysis
(PLA-DA) is a method of partial least-squares regression
(PLS regression), which bears some relation to PCA;
however, instead of finding the hyperplanes of maximum
variance, it finds a linear model describing some predicted
variables in terms of other observable variables. It is based
on linear transition from a large number of original
descriptors to a small number of orthogonal factors (latent
variables) providing the optimal linear model in terms of
predictivity. A PLS-DA model will try to find the
multidimensional direction in the X space that explains the
maximum multidimensional variance direction in the Y
space. Such modelling techniques should be used with
caution, since there is the possibility of over-fitting data
leading to incorrect interpretation of data [30].

Metabolomics in healthy individuals

In a longitudinal study of metabolites in the blood and urine
of healthy controls, there was relatively little variability
between subjects and study days. This provides reassurance
that metabolomic data have acceptable variability and may
highlight biomarkers of disease [31]. Collection and storage
of samples for metabolomic studies must also be consid-
ered. Blood or other biofluids, such as those from the eye,
need to be collected in a systematic and consistent manner
to minimise variation in the metabolites between samples
and then stored at a temperature to try and minimise the
deterioration of the metabolites prior to an analysis. The
addition of antibacterial preservative borate added to urine
is common in clinical samples; however, this had little
effect on metabolomic profiles compared to inter-person
variation [32].

The largest study of metabolomic profiles in healthy
individuals analysed urine samples from 4,600 people of
different ethnic groups. PCA analysis showed that North
and South Chinese, Japanese and UK/American split into
four distinct groups and that Japanese living in Japan
differed from Japanese-Americans. It was suggested that in
part this was due to diet, microbial gut composition and
metabolic profile. Formate was shown to be linked to blood
pressure, while alanine and hippurate were linked to gut
microbes. Formate is a by-product of carbon metabolism
via the activities of mitochondrial and cytosolic serine
hydroxymethyltransferases and the tetrahydrofolate reduc-
tase pathway. It can also be a product of fermentation of
dietary fibre by the gut microbiome. Alanine was higher in
people consuming a predominantly animal diet compared to
predominantly vegetable. The data suggest that diet and
metabolites are linked to blood pressure and coronary heart
disease in different ethnic groups [31, 33].

Age and gender of the patients must also be taken into
account with creatinine levels rising in growing children
and higher lipid synthesis in young women and protein
synthesis in young men [34, 35]. NMR analysis of sera
from children has been used but such studies have largely
been limited to known metabolic defects or in the
assessment of drug therapy. For example, in vivo brain
spectroscopy was able to identify metabolic changes in
children with hypothyroidism [36] and mercaptopurine
metabolites in children with inflammatory bowel disease
[37]. A recent study of muscle metabolites in the blood of
children with juvenile idiopathic inflammatory myopathy
[38] showed that NMR-based analysis of blood and urine
creatinine and creatine might have potential in assessing
disease damage in this and others diseases such as juvenile
chronic arthritis.

Levels of antioxidants are low in the elderly [39], which
might predispose to the establishment of chronic inflam-

j ocul biol dis inform (2009) 2:235–242 237



mation, following an initiating inflammatory event such as
an infection. An example of the mechanism through which
this could work was recently shown in protein-deficient
mice, which were as a result low in another antioxidant,
GSH, which when challenged with LPS gave a much
elevated response, resulting in enhanced activation of NFkB
and excess TNF production [40]. Boosting the GSH in these
animals, using NAC, normalised their responses.

Thus complex interactions between lifestyle, diet and
genes may affect the metabolic and therefore the functional
status of individuals with consequences for immune
function and susceptibility to disease.

Metabolomics in animal models and human disease

Metabolomics has been used in several animal models of
human disease. Apolipoprotein E (ApoE)-deficient mice are
a commonly used model of atherosclerosis, and NMR
spectroscopy identified vascular oxidative stress, inflam-
matory response and changes in energy metabolism in
atherogenesis in ApoE−/− mice [41]. ApoE−/− mice fed high
cholesterol diet, developed early atherosclerosis accompa-
nied by metabolic changes linked to inflammation and lipid
metabolism [42]. Both studies support the inflammatory
basis for atherosclerosis, but metabolomics also defines
other important pathways linked to the disease. In lung
disease, metabolomics was investigated to provide a non-
invasive method of monitoring asthma exacerbation in
guinea pigs. Urine metabolomic profiles discriminated
between ovalbumin challenged animals that developed
disease and sensitised or control animals with 90%
accuracy [43]. Metabolomic analysis of bronchial alveolar
lavage fluid distinguished between patients with cystic
fibrosis who had high inflammation at the time of sampling
compared to patients with low inflammation, characterised
by increased amino acid and lactate levels [44].

At a practical level metabolomics has been successfully
applied to the study of coronary heart disease where
analysis of serum NMR spectra was able to distinguish
between different degrees of coronary artery stenosis. The
features in the NMR spectra contributing to this discrimi-
nation were largely lipid components and yet classical
biochemical analysis of the usual lipid profiles was unable
to discriminate between these patients [26]. However, while
metabolomics had a higher predictive power, other multi-
variate analysis of risk factors for coronary artery disease
factors such as gender and statin treatment showed
confounding effects [27]. The effects could be accentuated
by the use of plasma compared to serum and other
methodological changes in the latter study, but the results
add a note of caution that identifying the optimal system of
analysis for each condition is important. With regards to

inflammatory disease a recent study demonstrated different
metabolic profiles in faecal extracts between patients with
Crohn’s disease and ulcerative colitis from normal controls.
More importantly, patients with Crohn’s disease or ulcera-
tive colitis could be discriminated using metabolomics,
with levels of glycerol being particularly relevant [45]. In a
recent study of identical twins, one healthy and one with
Crohn’s disease, metabolomic analysis identified profiles
between twins and between individuals with primarily ileal
Crohn’s or colonic Crohn’s. The results showed an associ-
ation between metabolites produced by gut microbes that
correlated with disease [46]. Identification of inflammatory
bowel disease depends on a clinical diagnosis, and
metabolomics offers a novel approach to aid diagnosis.
The effect of the gut microbe profile on blood metabolites
was suggested in a recent study on germ-free mice.
Compared to wild-type animals amino acid levels and
antioxidants were dependent on the presence of gut
microbes, suggesting a complex link between bacterial
and host metabolism [47].

Recently, metabolomic analysis has been reported to
discriminate in the prognosis and diagnosis of other human
diseases, including diabetes, blood pressure and cancer [33,
48, 49]. Thus it seems that the multiplexed analysis
inherent in this approach, which takes into account all
metabolite signals regardless of whether they have been
specifically identified, is able to provide information not
available by other means. In a group of 56 children,
metabolomic profiles showed reduced succinic acid, phos-
phatidylcholine and antioxidants, with increased pro-
inflammatory lysophosphatidylcholines in those individuals
who developed diabetes. These changes were not related to
known HLA-associated genetic markers of diabetes and
were detectable several months before seroconversion to
autoantibody was detected [50]. Metabolomic analysis has
proved useful in monitoring the effects of drug therapy.
Serum from diabetic patients treated with metformin
hydrochloride showed lower levels of lactate, oxaloacetate
and other metabolites, compared to sera from untreated
patients, suggesting a reduction in inflammation [51]. In
support of the response to treatment a recent study
described a new pharmaco-metabolomic approach to
personalise drug treatment using a combination of pre-
dose metabolomics and chemometrics to model and predict
responses in individual animals [52].

Metabolomic analysis of samples from patients with
clinically localised and metastatic prostate cancer and
healthy individuals with benign prostate produced separate
profiles for each condition. One metabolite, sarcosine, was
significantly increased in prostate cancer and correlated
with progression to metastatic disease. In vitro treatment of
prostate epithelial cells with sarcosine led to increased
invasiveness, a response that was attenuated by inhibition
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of glycine N-methyl transferase, the enzyme responsible for
sarcosine conversion from glycine [53]. Similarly, metab-
olomic analysis was reported to define poor prognosis in
neuroendocrine cancers [49].

Two recent studies analysed metabolomic profiles in
patients with hepatocellular carcinoma. While both showed
changes in metabolites that distinguished patients with
disease from healthy controls, the pattern was different as
one group was assayed with urine and one with sera. These
data support the use of metabolomics for diagnosis, but
caution must be used in extrapolating from one body fluid
to another [54, 55]. Given such caveats, NMR-based
metabolomics is now considered a reliable analytical tool
to identify biomarkers in human cancer [56].

Metabolomics in ocular disease

In a recent study we analysed vitreous fluid samples from
patients undergoing retinal surgery using NMR and the
metabolic profiles investigated by several techniques. The
results showed clear separation by both PCA and PLS-DA
analysis based on clinical diagnosis. The two largest groups
of samples were from patients with lens-induced uveitis
(LIU) and patients with chronic uveitis (CU). PCA and
PLS-DA could clearly separate the metabolomic profiles,
while a genetic algorithm applied to the data gave a
sensitivity and specificity of over 90% for this separation.
Individual metabolites identified from regions of the spectra
showed significant differences, with urea, oxaloacetate and
glucose all being raised in LIU samples compared to CU
samples. Both oxaloacetate and urea are involved in the
urea cycle, and urea is produced in the conversion of
arginine to ornithine, a process prominent in activated
macrophages and endothelial cells at the expense of nitric
oxide, suggesting more active inflammation in the LIU
patients. Lactate levels were high in vitreous samples from
both conditions [13]. These results are most probably
influenced by the inflammatory nature of the conditions.
Glucose is metabolised to lactate under anaerobic con-
ditions, and glycolysis is enhanced 6-fold in T cells in the
first 2 h following stimulation and 15-fold by 48 h. This
shift from mostly aerobic to anaerobic lactate production
occurs rapidly after activation of the cell cycle [57].
Peripheral T cells encounter a rapid decrease in oxygen
tension when they enter an inflammatory site, and CD3
engagement is prolonged under hypoxic conditions with
hypoxia-inducible factor (HIF-1) and its target gene product
adrenomedullin being critical. Hypoxia alone is not enough,
and T cell antigen receptor engagement is required for
increased HIF-1 accumulation. Signalling may go through
mTOR (mammalian target of rapamycin) as expression of
HIF-1 and its target gene is blocked by rapamycin [58].

Moreover, lymphocyte activation initiates a programme of
cell growth and proliferation that increases metabolic
demand. CD28 stimulation acting through phosphoinositide
3-kinase and the kinase Akt is required for T cells to
increase their glycolytic rate, allowing T cells to anticipate
biosynthetic needs [59, 60]. CD28 and increased stimula-
tion have been suggested to supply the bioenergic require-
ments of the cell, and increased glucose may protect the cell
from apoptosis. Conversion of naive CD8 cells to effector
cells induced an increase in eight genes encoding glycolytic
enzymes, and these cells display a greater glucose uptake,
higher glycolytic rate and increased lactate production
compared to naive cells. Glucose deprivation strongly
inhibited IFNγ gene expression, although IL-2 was unaf-
fected. These results imply that surrounding metabolic
conditions may affect CD8 function [61]. This effect of
environment is supported by studies showing that lactate
derived from tumour cells suppressed proliferation and
activity of cytotoxic of T cells (CTL). A recovery period in
lactic-acid-free medium restored CTL function. It was
suggested that the high lactic acid environment blocked T
cell lactic acid export thereby disturbing metabolism [62].
Hypoxia and high lactate levels stimulate macrophages to
perform similar pro-angiogenic functions in both tissues
and wounds. The resolution of wounds results in the
restoration of tissue integrity and perfusion, and macro-
phage numbers are reduced to pre-injury levels [63].
Lactate at the sites of wounds also affects fibroblasts
inducing collagen synthesis and vascular endothelial
growth factor (VEGF) by macrophages [64]. VEGF in turn
has been shown to induce endothelial cell migration [65].
Therefore the inflammatory milieu affects many cell types,
the outcome of which can be detected by metabolomics.

NMR analysis of ocular tissue has been reported in
several other studies. Early work by Greiner used phos-
phorus [31P] NMR to analyse ocular metabolism. The
results defined phosphate-containing metabolites in aque-
ous and vitreous fluids from pig eyes [66, 67]. Perchloric
acid extracts of rabbit cornea and lens analysed by 1H NMR
showed expression of taurine and glutathione suggesting a
robust antioxidant environment in ocular tissues [68, 69]. A
role for oxidant status was shown in a study of human and
rat lenses exposed to hyperglycaemic or oxidative stress.
Uptake of ascorbic acid was only minimally affected by
hyperglycaemia unless glutathione levels were significantly
reduced [70]. A series of studies by the Midelfart group in
Norway investigated the effects of UVB irradiation by
NMR spectroscopy. UVB treatment of rat lens caused a
significant depletion of several amino acids, lactate levels
and other water-soluble metabolites, although metabolite
levels were restored in the days after treatment [71].
Treatment of rabbit lens with UVB irradiation following
dexamethasone treatment daily for 36 days induced
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significant reductions in taurine, glutathione and lactate,
while levels of glucose rose. Therefore treatment with
dexamethasone exacerbates potential oxidative stress in the
mammalian lens. Similar results were shown for dexameth-
asone treatment of rabbit cornea [72]. UVB irradiation
caused significant metabolic changes in rabbit aqueous
humor, while UVA irradiation had no effect [73, 74]. A
stronger response was seen in aqueous humor from animals
exposed to repeated UVB exposure [75]. These data were
elegantly reviewed in a recent publication [76].

Metabolomic analysis of neurological conditions has also
been informative. Cerebrospinal fluid (CSF) and serum
samples from patients with a variety of neurological
conditions, including multiple sclerosis, were analysed by
NMR spectroscopy, and the metabolomic profile was used to
diagnose a second cohort of patients. The results showed that
for different disease conditions metabolomic analysis had a
sensitivity and specificity between 65% and 75% in
diagnosing disease [28]. As many patients with intermediate
uveitis go on to develop multiple sclerosis it will be of
interest to compare these patient groups using metabolomics.
CSF from patients with bacterial or fungal meningitis could
be separated from viral meningitis and healthy controls.
Metabolites of both bacterial and host origin contributed to
the separation. Metabolomic data correlated with onset and
course of infection in one patient with two episodes and with
response to therapy in another [77]. Together these data
support the continued analysis of CSF for diagnostic
purposes, including conditions that affect the eye.

Future prospects

Metabolomics measures the metabolite profile in body
fluids or tissues and as such provides a profile of pathways
and processes that have been activated in those samples.
The results presented in this review strongly support further
investigation of metabolomic analysis of ocular disease,
including glaucoma, Graves ophthalmopathy, age-related
macular degeneration, inflammatory and infectious con-
ditions. The growing consensus that metabolites associate
with particular processes (e.g. lactate and antioxidant
changes with inflammation) and with particular conditions
(e.g. sarcosine and prostate cancer) emphasises the potential
of this methodology. Recent studies linking metabolomics
to genomic profiling suggest that there may be even greater
opportunities for a systems biology approach that will lead
to a greater understanding of disease conditions and
underlying mechanisms involved.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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