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EXISTENCE THRESHOLDS AND RAMSEY PROPERTIES OF RANDOM

POSETS

VICTOR FALGAS-RAVRY, KLAS MARKSTRÖM, ANDREW TREGLOWN AND YI ZHAO

Abstract. Let P(n) denote the power set of [n], ordered by inclusion, and let P(n, p) denote the
random poset obtained from P(n) by retaining each element from P(n) independently at random
with probability p and discarding it otherwise.

Given any fixed poset F we determine the threshold for the property that P(n, p) contains F
as an induced subposet. We also asymptotically determine the number of copies of a fixed poset
F in P(n). Finally, we obtain a number of results on the Ramsey properties of the random poset
P(n, p).

1. Introduction

Let (P,≤P ), (Q,≤Q) be posets. A poset homomorphism from (P,≤P ) to (Q,≤Q) is a function
φ : P → Q such that for every x, y ∈ P , if x ≤P y then φ(x) ≤Q φ(y). We say that (P,≤P )
is a subposet of (Q,≤Q) if there is an injective poset homomorphism from (P,≤P ) to (Q,≤Q);
otherwise, (Q,≤Q) is said to be (P,≤P )-free. Further we say (P,≤P ) is an induced subposet of
(Q,≤Q) if there is an injective poset homomorphism φ from (P,≤P ) to (Q,≤Q) such that for every
x, y in P , φ(x) ≤Q φ(y) if and only if x ≤P y. We shall sometimes use P as a shorthand for the poset
(P,≤P ) when the partial order ≤P is clear from context, and write e.g. P -free for (P,≤P )-free.

Set [n] := {1, 2, . . . , n}, and denote by P(n) the power set of [n]. When viewed as a poset
equipped with the inclusion relation, we refer to P(n) as the Boolean lattice of dimension n. Recall
that given a poset P , a subset A ⊆ P is an antichain if all distinct A,B ∈ A are incomparable. A
chain of length ` in P is an `-subset of P in which all elements are comparable.

Many classical questions in graph theory have analogues in the setting of the Boolean lattice.
For example, in graph theory, Turán-type questions ask what is the maximum number of edges a
graph on n vertices may have if it does not contain any copy of a fixed graph H as a subgraph.
The oldest result of this flavour in the study of the Boolean lattice is Sperner’s theorem [30] which
asserts that the size of the largest antichain in P(n) (i.e. the maximum size of a subposet of P(n)
not containing a chain of length 2) is

(
n
bn/2c

)
. More generally, there has been much interest in

determining the largest P -free subset of P(n) for a range of posets P (for a sample of such results
see e.g. [1, 7, 10, 13, 21, 24]; furthermore, [12, 16] are surveys on the topic).

Recall that the Erdős–Rényi random graph Gn,p is the n-vertex graph where each edge is present
with probability p, independently of all other choices. In this paper we consider an analogue of
the Erdős–Rényi random graph in the setting of posets: let P(n, p) be the induced subposet of
P(n) obtained by independently including each element from P(n) in P(n, p) independently at
random with probability p (and discarding it otherwise). The random poset model P(n, p) was
first investigated by Rényi [26] who determined the probability threshold for the property that
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P(n, p) is not itself an antichain, thereby answering a question of Erdős. This model has also been
studied with respect to a range of other properties. Answering a question of Osthus [23], a version
of Sperner’s theorem for P(n, p) was obtained independently by Balogh, Mycroft and Treglown [3]
and by Collares Neto and Morris [9].1 There have also been a number of results concerning the
length of (the longest) chains in P(n, p) and related models of random posets (see for example,
[6, 19, 20]).

Note too that natural questions concerning P(n, p) also arise when viewing it as a set system
rather than a poset (see e.g. the random version of Katona’s intersection theorem in [4]).

1.1. The existence threshold for a subposet. One of the fundamental questions in the study
of the random graph Gn,p concerns the values of p for which Gn,p with high probability (w.h.p.)
contains a given fixed graph H as a subgraph. Indeed, this was the first problem studied in a
seminal paper of Erdős and Rényi [11], who determined the threshold for this problem in the case
when H belongs to the class of balanced graphs. It took another twenty-one years before Bollobás [5]
determined the threshold for general graphs.

It is natural to ask the analogous question in the setting of posets. That is: given a fixed poset
P , for which values of p do we have that P(n, p) w.h.p. contains a copy of P as a subposet? In this
paper we answer this question for every poset P . More precisely, we determine the critical value
c?(P ) such that for p = e−cn and c > c?(P ) fixed, w.h.p. P(n, p) does not contain a copy of P ,
while for p = e−cn and c < c?(P ) fixed, w.h.p. P(n, p) contains an induced copy of P .

Whilst the analogous result in the setting of the random graph Gn,p is not too difficult to state,
in the Boolean lattice we must introduce several non-trivial concepts before we can give a formal
statement of our main result. Thus, we defer its precise statement (Theorem 6.4) to Section 6. In
Section 2 we give the intuition behind this result. We additionally prove that for almost all posets
P with N elements, c?(P ) = (log 2)/3 +O(1/ logN) (see Theorem 8.7).

We remark that Kreuter [20] considered a closely related question. Indeed, given a distributive
lattice L he determined the threshold for the property that w.h.p. L can be embedded in P(n, p).
That is, given a, b ∈ L, write a ∨ b for the join of a and b and a ∧ b for the meet of a and b. Then
an embedding of L into P(n, p) is an injective poset homomorphism φ from L to P(n, p) such that
for all a, b ∈ L, φ(a ∨ b) = φ(a) ∨ φ(b) and φ(a ∧ b) = φ(a) ∧ φ(b). Whilst the existence threshold
we obtain for our problem has some features similar to that of Kreuter’s, the two problems differ
quite significantly.

1.2. Counting subposets in the Boolean lattice. In order to prove our existence threshold
result (Theorem 6.4), in Section 4 we provide a correspondence between copies of a fixed poset P
in P(n) and partitions of [n]. As a consequence of this we asymptotically determine the number of
copies of P in P(n).

Theorem 1.1. Let P be a fixed poset with m antichains (including the empty antichain). Then
P(n) contains

(1 + o(1))mn

copies of P .

Thus, the number m of antichains in P is the parameter governing how many copies of P there
are in the Boolean lattice. Theorem 1.1 also implies that the number of non-induced copies of P in
P(n) is o(mn), since such a copy of P is simply another poset with strictly fewer antichains. Note
that Axenovich and Walzer [2, Theorem 5] gave (asymptotically weaker) bounds on the number of
copies of P(t) in P(n).

1This question had first been studied by Kohayakawa and Kreuter [18].
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1.3. Ramsey properties of random posets. Ramsey-type problems have been extensively stud-
ied for graphs, and there has been interest in investigating similar phenomena in the Boolean lattice.
As a consequence of the Hales–Jewett theorem, we have the following analogue of Ramsey’s theo-
rem for complete graphs in the Boolean setting: given any fixed r,m ∈ N, if n is sufficiently large
then in every r-colouring of the elements of P(n) there is a monochromatic copy of P(m) (see
e.g. [25, p49]). In a recent paper, Axenovich and Walzer [2] gave bounds on the so-called poset
Ramsey number for various posets: given posets F and F ′, the poset Ramsey number R(F, F ′) is
the smallest N such that any 2-colouring of the elements of P(N) contains a red induced copy of
F or a blue induced copy of F ′. They also considered multicolour variants of this Ramsey number.
See also the very recent papers [22, 8].

In the case of the random graph Gn,p, we have a clear understanding of (symmetric) Ramsey
properties. Indeed, seminal work of Rödl and Ruciński [27, 28, 29] determines the threshold for the
property of Gn,p being (H, r)-Ramsey for any fixed graph H and r ∈ N. (We say that a graph G
is (H, r)-Ramsey if every r-colouring of G yields a monochromatic copy of H in G.) However, far
less is known about Ramsey properties of P(n, p).

In 1998, Kreuter [20] initiated the study of such questions for P(n, p) – however, in the setting
of monochromatic embedded copies of a distributive lattice L. Given a lattice L and r ∈ N we
say that a poset P is (L, r)-embed-Ramsey if whenever the elements of P are r-coloured, there
exists an embedded monochromatic copy of L in P . Kreuter [20] determined the threshold for the
property that P(n, p) is (C`, r)-embed-Ramsey, where here C` denotes a chain of length `. He also
raised the question of generalising this result to other sublattices. In particular, he asked for the
probability threshold for the property that whenever P(n, p) is 2-coloured it contains an embedded
monochromatic copy of P(2).

Given a poset F and r ∈ N we say that a poset P is (F, r)-Ramsey if whenever the elements of
P are r-coloured, there exists a monochromatic copy of F in P . Similarly, given posets F1, . . . , Fr
we say that a poset P is (F1, . . . , Fr)-Ramsey if whenever the elements of P are r-coloured, for at
least one 1 ≤ i ≤ r, in P there exists a copy of Fi in colour i. In this paper we initiate the study
of the following general question:

Question 1.2. Given posets F1, . . . , Fr, what values of p ensure that w.h.p. P(n, p) is (F1, . . . , Fr)-
Ramsey?

Note that a copy of C` in P(n, p) is always an embedded copy; so in fact the aforementioned
result of Kreuter answers Question 1.2 in the case when F1 = · · · = Fr = C`. As an application of
our existence threshold theorem (Theorem 6.4), we obtain a number of somewhat modest results
concerning the Ramsey properties of random posets. For each poset P on at most 3 elements,
(combined with Kreuter’s result) we determine the critical value cRam(P ) such that for p = e−cn

and c > cRam(P ) fixed, w.h.p. P(n, p) is not (P, 2)-Ramsey, while for p = e−cn and c < cRam(P )
fixed, w.h.p. P(n, p) is (P, 2)-Ramsey. We give a number of results for other posets too, for example,
the following result for P(2).

Theorem 1.3. The following holds:

(i) If c < 0.3250121326 and p = e−cn then w.h.p. P(n, p) is (P(2), 2)-Ramsey.
(ii) If c > 0.3289037391 and p = e−cn then w.h.p. P(n, p) is not (P(2), 2)-Ramsey.

Further Ramsey-type results are presented in Section 9. We suspect that Question 1.2 is likely
to be extremely challenging in general. It would be very interesting to resolve the question fully in
the case when r = 2 and F1 = F2 = P(2).

1.4. Organisation of the paper. The paper is organised as follows. In Section 2 we provide an
intuitive outline of the existence threshold result (Theorem 6.4). Sections 3–5 introduce a number
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of concepts and auxiliary results that allow us to formally state and prove Theorem 6.4 in Section 6.
Specifically, Section 3 introduces the crucial notions of extension families and shadows. In Section 4
we formally introduce a correspondence between partitions of [n] and copies of a fixed poset P in
P(n). This correspondence not only allows us to prove Theorem 1.1, but is also vital for the proof
of Theorem 6.4. In Section 5 we introduce the notion of the weight of a partition of [n] and describe
its connection to shadows.

As discussed earlier, Theorem 6.4 determines the critical value c?(P ) such that for p = e−cn and
c > c?(P ) fixed, w.h.p. P(n, p) does not contain a copy of P , while for p = e−cn and c < c?(P )
fixed, w.h.p. P(n, p) contains an induced copy of P . Whilst we provide an explicit formula for
c?(P ) (see Definition 6.2 and Remark 6.3), computing c?(P ) by hand is in general awkward. In
Section 7 we give a number of results (and heuristics) that provide bounds for c?(P ); this allows us
to then compute c?(P ) for a number of posets P in Section 8. In Section 9 we turn our attention
to Ramsey questions; we provide a range of results including general bounds, and bounds for the
(P,Q)-Ramsey problem in P(n, p) for several specific pairs of posets P,Q. We conclude the paper
with a number of open problems (see Section 10).

2. Intuition behind the existence threshold

In order to state the threshold for the property that P(n, p) contains a fixed P as a subposet, one
requires several concepts. In particular, at first sight, it may seem rather hard to understand the
intuition behind the formal statement of the threshold. In this section we describe the threshold
in more informal terms in order to build up understanding for when we do finally state the precise
result.

2.1. Notation. All posets considered in this paper are finite. Given a poset P , we denote by
A(P ) the family of all antichains of P . Note that we include the empty antichain in A(P ). So for
example, both ∅ and {∅} belong to A(P(n))! We write a(P ) for the cardinality of A(P ). We will
often enumerate the set of antichains as A(P ) =: {S1, . . . , Sa(P )}; we always implicitly assume that
Sa(P ) = ∅.

A poset on a set of elements X is said to be connected if it is not possible to partition X into
two non-empty sets X1 and X2 such that for every x1 ∈ X1 and x2 ∈ X2, the elements x1 and x2

are mutually incomparable. Equivalently, a poset is connected if its Hasse diagram is a connected
graph.

Given integers m,n, we write [m][n] for the collection of ordered m-partitions of [n], i.e. the
collection of all m-tuples (A1, A2, . . . , Am), where the Ais are pairwise disjoint subsets of [n] whose

union is [n]. Further, we write [m]
[n]
? for the collection of all (A1, A2, . . . , Am) in [m][n] for which

Aj 6= ∅ for all j ∈ [m].
We use standard Landau notation throughout this paper. In a probabilistic setting, we say that

an n-dependent event E = E(n) occurs with high probability (w.h.p.) if P(E)→ 1 as n→∞.

2.2. A correspondence between partitions of [n] and subposets of P(n). A crucial feature of
the existence threshold concerns a correspondence between partitions of [n] and subposets of P(n).
More precisely, fix a poset P , and consider an arbitrary fixed ordering S1, . . . , Sm of the elements

of A(P ) (so here m := a(P )). Now suppose we are given a partition A = (A1, A2, . . . , Am) ∈ [m]
[n]
? .

We use A to build an injective poset homomorphism φ : P → Pn as follows. Given i ∈ P , let
D(i) := {i′ ∈ P : i′ ≤P i} denote the collection of elements of P which are less than or equal to i
with respect to the partial order ≤P . Then let φ be the map sending i ∈ P to the subset Xi ⊆ [n],
where

(2.1) Xi :=
⋃

j: Sj∩D(i) 6=∅

Aj .
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Set f(A) = φ. Roughly speaking, in Section 4 we show that f is a bijection from the set of

partitions [m]
[n]
? to the set of all induced copies of P in P(n) (this is a slight simplification, see

Lemmas 4.2 and 4.5).
Indeed, notice that for any i, Xi =

⋃
i′∈D(i)Xi′ and thus φ ensures that comparable elements of

P are mapped to comparable elements of P(n). Meanwhile, if i, i′ are incomparable elements of
P , since the definition of Xi involves the antichain Sj := {i}, and the definition of Xi′ involves the
antichain Sj′ := {i′}, we see that i and i′ are mapped to incomparable elements of P(n).

Given an induced copy P ′ of P in P(n) we say that A := f−1(P ′) ∈ [m]
[n]
? is the partition of [n]

associated with P ′. Write A = (A1, . . . , Am) and define ai := |Ai|/n. We say that P ′ is a copy of
P of (a1, . . . , am)-type.

The partition associated with a copy P ′ of P in P(n) encodes structural information on how P ′ is
positioned within P(n). To illustrate this, consider the case when P := P(2). Let x1, . . . , x4 denote
the elements of P(2), where x1 is the minimal element and x4 is the maximal element. Note we have
that |A(P(2))| = 6. By definition, every copy P ′ of P(2) in P(n) of (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)-
type has its minimal element x1 on the n/6-layer of P(n) (since x1 lies in one antichain in P(2)).
The two middle elements x2, x3 of P(2) lie in the n/2-layer of P(n) (since they each lie in two
antichains, in addition to the antichain that x1 lies in). Finally, x4 is positioned on the 5n/6-layer
(since it is only the empty antichain that does not contain one of x1, . . . , x4). The type of P ′

not only determines the layers of P(n) in which the elements of P ′ are located; it also gives us
information about the way in which such elements ‘overlap’, when viewed as subsets of [n]. Indeed,
continuing our running example above, suppose x2 ∈ P(2) is mapped to the set X2 ∈ P(n) and
x3 ∈ P(2) is mapped to the set X3 ∈ P(n). Since {x1} and {x2, x3} are the only antichains that
intersect both D(x2) and D(x3), we know that |X2 ∩X3| = n/3.

Note that in such a copy P ′ of P(2) in P(n) we have a copy V ′ of the poset V = {x1, x2, x3}
whose minimal element lies in the n/6-layer, and whose two other elements lie in the n/2-layer of
P(n). We have that A(V ) = {{x1}, {x2}, {x3}, {x1, x2}, ∅}. It is easy to check that V ′ is in fact a
copy of V in P(n) of (1/6, 1/6, 1/6, 1/6, 1/3)-type.

2.3. Copies of P in P(n, p). The correspondence mentioned in the previous section plays a cru-
cial role in the existence threshold problem. To see this, suppose we first ask for the threshold
for the property that P(n, p) contains a copy of P(2) of (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)-type. To en-
sure w.h.p. that P(n, p) contains such a copy of P(2), certainly we need p to be chosen so that
the expected number of copies of P(2) of (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)-type in P(n, p) is at least
1. (Otherwise, Markov’s inequality easily implies one cannot have such a copy of P(2) w.h.p.)
Moreover, one also needs p to be such that the expected number of copies of V of the ‘correct type’
(i.e. (1/6, 1/6, 1/6, 1/6, 1/3)-type) in P(n, p) is at least 1. In fact, for any subposet F of P(2) one
needs that the expected number of copies of F of the ‘correct’ type in P(n, p) is at least 1. It turns
out these are the only barriers; if p is such that each of the above expectations is large, then indeed
w.h.p. P(n, p) contains a copy of P(2) of (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)-type.

Now suppose we wish to find the threshold for the property that P(n, p) contains a copy of P(2)
(i.e. the type of P(2) does not matter). Then, roughly speaking, we prove that this threshold p∗ is
the smallest 0 < p < 1 such that there is some 6-tuple (α1, . . . , α6) with each αi > 0 such that

•
∑
αi = 1;

• the expected number of copies of P(2) in P(n, p) of (α1, . . . , α6)-type is at least one;
• given any subposet F of P(2), the expected number of copies of F of the ‘correct’ type is

at least one.
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More generally, the threshold p∗ for the existence of any fixed poset P in P(n, p) is analogous.
Indeed, it is the smallest 0 < p < 1 such that there is some m-tuple (α1, . . . , αm) with each αi > 0
such that

•
∑
αi = 1;

• the expected number of copies of P in P(n, p) of (α1, . . . , αm)-type is at least one;
• given any subposet F of P , the expected number of copies of F of the ‘correct’ type is at

least one.

(Recall here we define m := a(P ) = |A(P )|.)

3. Extension families and shadows

To rigorously build up the correspondence between partitions of [n] and copies of a poset P in
P(n) described in the last section, we require several definitions. In this section we shall define
notions of extension families and shadows for antichains that will play a crucial role in both the
proofs and the statements of our main results. Here (and elsewhere in the paper) we write x <P y
as a shorthand for the statement “x ≤P y and x 6= y”.

Definition 3.1 (Extension family). Let S be an antichain in A(P ). The extension family of S in
P is

ExtP (S) := {S′ ∈ A(P ) : S ( S′}.

Thus ExtP (S) is the collection of all antichains in A(P ) strictly containing S as a sub-antichain.
So, for example, ExtP (∅) = A(P ) \ {∅}, and ExtP (S) = ∅ if and only if S is a maximal antichain.
When the poset P is clear from context, we usually omit the subscript P and write Ext(S) for
ExtP (S).

Definition 3.2 (Shadow). Let (P,≤P ) be a poset, and Q ⊆ P . Given an antichain S ∈ A(P ), its
(upper) shadow ∂QS is the set of all y ∈ Q such that

(i) there exists x ∈ S with x ≤P y,
(ii) y is ≤P -minimal in Q with respect to property (i): that is, for every z ∈ Q with z <P y and

every x ∈ S, we have x 6≤P z.

Clearly we have ∂PS = S for every antichain S ∈ A(P ). Going back to our running example
P(2) from Section 2.2, the shadow of the antichain {x1} inside the subposet Λ of P(2) induced by
{x2, x3, x4} is the antichain {x2, x3}; also, the shadow of the antichain {x2, x3} inside the subposet
induced by {x3, x4} is the singleton antichain {x3}. More generally we have:

Proposition 3.3. For every S ∈ A(P ) and Q ⊆ P , the shadow ∂QS is an antichain in (Q,≤P )
(and thus in (P,≤P )).

Proof. Property (ii) in Definition 3.2 implies elements of ∂QS are pairwise ≤P -incomparable. �

4. Poset embeddings and partitions

Let (P,≤P ), (Q,≤Q) be posets. Recall that a poset homomorphism from (P,≤P ) to (Q,≤Q) is
a function φ : P → Q such that for every x, y ∈ P , if x ≤P y then φ(x) ≤Q φ(y). We denote by
homP (Q) the set of poset homomorphism from (P,≤P ) to (Q,≤Q), and by inj− homP (Q) the set
of injective homomorphisms.

We begin by showing that the number of copies of a subposet P inside P(n) may be estimated

by counting certain partitions of [n] = {1, 2, . . . , n}. Given integers m,n, recall that we write [m][n]

for the collection of ordered m-partitions of [n], i.e. the collection of all m-tuples (A1, A2, . . . , Am),
6



where the Ais are pairwise disjoint subsets of [n] whose union is [n]. Further, recall that we write

[m]
[n]
? for the collection of all (A1, A2, . . . , Am) in [m][n] for which Aj 6= ∅ for all j ∈ [m]. Note that

|[m][n]| = mn and, for m fixed |[m]
[n]
? | =

m−1∑
i=0

(m− i)n
(
m

i

)
(−1)i = mn +O ((m− 1)n) .

(4.1)

Our goal in this section is to prove the following:

Theorem 4.1. Let P be a fixed poset with a(P ) = m. Then∣∣∣inj− homP (P(n))
∣∣∣ = mn +O ((m− 1)n) .

We shall prove this result by constructing two maps: an injection from homP (P(n)) into [m][n]

(Lemma 4.2), and an injection from [m]
[n]
? into inj− homP (P(n)) (Lemma 4.5). In addition to

proving Theorem 4.1, these maps will play an important role when determining the existence
threshold for copies of P in P(n), by establishing a correspondence between certain “weighted”
copies of P and certain “weighted” m-partitions of [n]. (In the language of Section 2 we mean the
correspondence between copies of P in P(n) of a given type and the associated partition of [n].)

Let (P,≤P ) be a poset with a(P ) = m. Assume without loss of generality that P = [N ], and
that the antichains of P are enumerated as

A(P ) = {S1, S2, . . . , Sm},

where Sm = ∅ is the empty antichain. Suppose we are given φ ∈ homP (P(n)). We use φ to build
an m-partition of [n] as follows.

(1) For i ∈ [N ], set Xi := φ(i).
(2) For every i ∈ [N ], set Yi := Xi \

⋃
j<P i

Xj .

(3) For every j ∈ [m− 1], set Zj :=
⋂
i∈Sj Yi.

(4) For every j ∈ [m− 1], set Aj := Zj \
(⋃

Sk∈Ext(Sj)
Zk

)
.

(5) Finally, set Am := [n] \
(⋃

j∈[m−1]Aj

)
.

So Xi is the subset of [n] that φ maps i to; Yi is the subset of [n] that contains all elements of Xi

that do not lie in any other Xj where j <P i; given a non-empty antichain Sj , Zj is set of elements
of [n] that lie in every Yi, for each i in the antichain Sj . Now define f1(φ) := (A1, A2, . . . , Am).

Lemma 4.2. The map f1 is an injection homP (P(n))→ [m][n].

Proof. We split the proof into two claims, from which the lemma is immediate.

Claim 4.3. For every φ ∈ homP (P(n)), f1(φ) ∈ [m][n].

Proof. The definition of Am ensures that
⋃
j∈[m]Aj = [n], so all we need to show is that the Aj are

pairwise disjoint. Consider Aj1 and Aj2 with j1, j2 distinct elements of [m]. Clearly Am is disjoint
from every other Ai so we may assume that j1, j2 ≤ m− 1.

If Sj1 ∈ Ext(Sj2), then by definition (step 4) Aj2 is disjoint from Zj1 ⊇ Aj1 . We are similarly
done if Sj2 ∈ Ext(Sj1). Thus we may assume that Sj1 6⊆ Sj2 and Sj2 6⊆ Sj1 . In particular, there
exist i1 ∈ Sj1 \ Sj2 and i2 ∈ Sj2 \ Sj1 .

Suppose for a contradiction that there exists some x ∈ [n] with x ∈ Aj1 ∩Aj2 . Then by definition
(steps 3 and 4) x ∈ Aj1 ⊆ Zj1 =

⋂
i∈Sj1

Yi. In particular we must have x ∈ Yi1 . Similarly we have

x ∈ Yi2 . By definition (step 2), this implies the elements i1 and i2 are incomparable in (P,≤P ).
7



Now consider Sj3 := Sj1 ∪ Sj2 . The paragraph above established that elements in Sj1 \ Sj2 and
Sj2 \ Sj1 are mutually incomparable. Together with the fact that Sj1 and Sj2 are antichains, this
implies that Sj3 is an antichain.

Thus Sj3 is an antichain which extends both of Sj1 and Sj2 . Further Sj3 is distinct from both
Sj1 (since i2 ∈ Sj2 \ Sj1 ⊆ Sj3 \ Sj1) and Sj2 (since i1 ∈ Sj3 \ Sj2). What is more, since x ∈ Aj1 ⊆
Zj1 =

⋂
i∈Sj1

Yi, we have that x ∈ Yi for every i ∈ Sj1 , and similarly x ∈ Yi for every i ∈ Sj2 .

This implies that x ∈ Zj3 =
⋂
i∈Sj3

Yi. Since Sj3 ∈ Ext(Sj1) and by definition (step 4) we have

Aj1 ⊆ Zj1 \ Zj3 ⊆ [n] \ {x}, and x /∈ Aj1 , which gives the desired contradiction. �

Claim 4.4. f1 is injective.

Proof. Let φ, φ′ be distinct elements of homP (P(n)). Let Xi, Yi, Zj , Aj and X ′i, Y
′
i , Z ′j , A

′
j be the

families of subsets of [n] in steps 1–4 of the definition of f1 applied to φ and φ′ respectively.
Since φ 6= φ′, there must be a ≤P -minimal element i ∈ P such that φ(i) = Xi 6= X ′i = φ′(i)

and for all k <P i, Xk = X ′k. The symmetric difference of Xi4X ′i is nonempty and we may
assume without loss of generality that there exists x ∈ [n] with x ∈ Xi \X ′i. By our ≤P -minimality
assumption, we have x /∈ Xk for all k <P i, and thus x ∈ Yi.

Let Sj1 be the antichain consisting of the singleton {i}. By definition (step 3) , we have x ∈
Zj1 = Yi. Now let Sj2 be a ⊆-maximal antichain from Ext(Sj1) ∪ {Sj1} with x ∈ Zj2 (i.e. x ∈ Zj2
and for every Sj3 ∈ Ext(Sj2), we have x /∈ Zj3). By definition (step 4), we have x ∈ Aj2 . On the
other hand, since i ∈ Sj1 ⊆ Sj2 , we have by definition (steps 4, 3) that A′j2 ⊆ Z ′j2 ⊆ Y ′i ⊆ X ′i.

Since x /∈ X ′i, x /∈ A′j2 and hence Aj2 6= A′j2 . The partitions f1(φ) and f1(φ′) are thus different, as
claimed. �

�

Now suppose we are given a partition A = (A1, A2, . . . , Am) ∈ [m]
[n]
? . We use A to build an

injective poset homomorphism φ : P → P(n) by letting φ(i) = Xi, where Xi defined in (2.1). Set
f2(A) := φ.

Lemma 4.5. The map f2 is an injection [m]
[n]
? → inj− homP (P(n)). Moreover, for each A ∈

[m]
[n]
? , f2(A) is an induced copy of P in P(n).

Proof. Again we split the proof of the lemma into two claims.

Claim 4.6. For every A ∈ [m]
[n]
? , φ = f2(A) ∈ inj− homP (P(n)). Moreover φ(P ) is an induced

copy of P in P(n).

Proof. Let A ∈ [m]
[n]
? , and let φ = f2(A). If i′ ≤P i, then D(i′) ⊆ D(i), which by construction

of φ implies Xi′ ⊆ Xi. Thus φ : i 7→ Xi is a poset homomorphism from (P,≤P ) to (P(n),⊆) as
claimed.

It remains to show that φ is an injection and that φ(P ) is an induced copy of P in P(n). It
suffices to show that for i1, i2 ∈ P , if i1 �P i2, then Xi1 * Xi2 . Indeed, assuming this fact, if
i1 6= i2, then either i1 �P i2 or i2 �P i1, and in either case, we have Xi1 6= Xi2 ; in particular, this
ensures φ is injective and that strictly comparable pairs are mapped to strictly comparable pairs.
The fact also guarantees incomparable pairs are mapped to incomparable pairs, as desired.

To prove this fact assume that i1 �P i2. Then i1 /∈ D(i2). Let Sj be the antichain {i1}. Then

Sj ∩D(i1) 6= ∅ and Sj ∩D(i2) = ∅. It follows that Aj ⊆ Xi1 and Aj ∩Xi2 = ∅. Since A ∈ [m]
[n]
? ,

we have Aj 6= ∅. This implies that Xi1 * Xi2 , as claimed. �

Claim 4.7. f2 is injective.
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Proof. Let A = (A1, . . . , Am) and A′ = (A′1, . . . , A
′
m) be distinct partitions from [m]

[n]
? , and let

φ = f2(A) and φ′ = f2(A′). We claim φ 6= φ′.
If Am 6= A′m, then

⋃
i∈P φ(i) = [n] \ Am 6= [n] \ A′m =

⋃
i∈P φ

′(i), and hence φ 6= φ′ as required.
Assume therefore that Am = A′m. Since A,A′ are distinct partitions of [n] in which every part
is non-empty, there exists x ∈ [n] and distinct elements j1, j2 ∈ [m − 1] such that x ∈ Aj1 \ A′j1
and x ∈ A′j2 \ Aj2 . Now Sj1 , Sj2 are distinct non-empty antichains in P . Assume without loss of

generality that there exists some element i1 ∈ P with i1 ∈ Sj1 \ Sj2 .
First assume that Sj2 ∩D(i1) = ∅. By the definition of φ, X ′i1 ⊆ [n] \ A′j2 ⊆ [n] \ {x}. On the

other hand, since Sj1 ∩D(i1) 6= ∅, we have x ∈ Aj1 ⊆ Xi1 . Thus φ(i1) = Xi1 6= X ′i1 = φ′(i1).
Second assume that there exists i2 ∈ Sj2 with i2 <P i1, then by definition of f2 we have

x ∈ A′j2 ⊆ X ′i2 . On the other hand for every i′ ≤P i2 we have i′ <P i1 and thus i′ /∈ Sj1 , implying

Xi2 ⊆ [n] \Aj1 . In particular x /∈ Xi2 , and thus φ′(i2) = X ′i2 6= Xi2 = φ(i2).
It follows that φ and φ′ are distinct members of homP (P(n)), as claimed. �

�

Remark 4.8. The proof of Lemma 4.5 shows a little more, namely, f2 remains an injection when

viewed as a function [m][n] → homP (P(n)) (because we only used A ∈ [m]
[n]
? when showing that

f2(A) is an injective poset homomorphism). It is not hard to show f2 is in fact the inverse of f1:

for every A ∈ [m][n], we have f1(f2(A)) = A.

Proof of Theorem 4.1. By Lemmas 4.5 and 4.2

|[m]
[n]
? | ≤ |inj− homP (P(n))| ≤ |homP (P(n))| ≤ |[m][n]|.

The theorem then follows from the estimates (4.1). �

5. Shadows and weighted partitions

Building on the work in the previous section, we investigate weighted partitions and their inter-
action with shadows. Write 4m for the m-simplex

4m :=

{
(α1, α2, . . . , αm) : ∀i, αi ≥ 0 and

m∑
i=1

αi = 1

}
.

We write4∗m for the set of all α ∈ 4m whose coordinates are all non-zero. We follow the convention
of using α to denote the vector (α1, α2, . . . , αm) ∈ 4m (and vice versa). Similarly we use A to

denote the partition (A1, A2, . . . , Am) ∈ [m][n] (and vice versa).

Definition 5.1 (Weighted partitions). The weighting of A ∈ [m][n] is

w(A) :=

(
|A1|
n
,
|A2|
n
, . . . ,

|Am|
n

)
.

The weighting w(A) is an element of 4m. Given α ∈ 4m, we say that A is α-weighted if

w(A) = α. We denote by [m]
[n]
α the collection of all α-weighted A ∈ [m][n], and we say α is

feasible for n if this collection is non-empty (that is, if nα ∈ (Z≥0)m).

Definition 5.2 (ε-close weightings). Given ε > 0, we say that two elements α,β ∈ 4m are ε-close
if

‖α− β‖∞ := max
{
|αi − βi| : 1 ≤ i ≤ m

}
≤ ε.
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We also say that a partition A ∈ [m][n] is ε-close to being α-weighted if its weighting w(A) is

ε-close to α. We denote by [m]
[n]
α±ε the collection of all such A. We say α± ε is feasible for n if

this collection is non-empty.

Definition 5.3. Let (P,≤P ) be a poset together with a labelling of its antichains as A(P ) =
{S1, S2, . . . , Sm} (where Sm is the empty antichain). Suppose we are given an ordered m-partition
of [n], A = (A1, A2, . . . , Am), with each set Ai associated to the antichain Si. Given Q ⊆ P
and a labelling of the antichains in (Q,≤P ) as A(Q) = {T1, T2, . . . , TM} (where TM is the empty
antichain), the M -partition of [n] inherited from A is B = (B1, B2, . . . , BM ), where

Bi :=
⋃

j: ∂QSj=Ti

Aj .

(Note that B is a partition of [n] by Proposition 3.3.) We call B the Q-shadow of A, and denote
it by ∂Q(A). Note that Am ⊆ BM .

Observe that if A is α-weighted, then its Q-shadow B = ∂Q(A) is β-weighted, where β is given
by

βi :=
∑

j: ∂QSj=Ti

αj ∀i ∈ [M ].(5.1)

We call β the weighting induced by α in Q, or shadow of α in Q, and denote it by β =: ∂Q(α).

We can relate Q-shadows to our injection f1 : inj− homP (P(n))→ [m][n] as follows. Given φ ∈
inj− homP (P(n)), let φ|Q denote the restriction of φ toQ (which is an element of inj− homQ(P(n))).
In a slight abuse of notation, we let f1(φ|Q) denote the image of φ|Q under f1 defined with respect
to Q.

Proposition 5.4. Let (P,≤P ) be a poset, and let Q ⊆ P . Then for every φ ∈ inj− homP (P(n)),
we have

∂Q(f1(φ)) = f1(φ|Q).

Proof. Assume without loss of generality that P = [N ] and Q = [q] ⊆ [N ]. Further let A(P ) =
{S1, S2, . . . , Sm} and A(Q) = {T1, T2, . . . , TM} be enumerations of the antichains in (P,≤P ) and
(Q,≤P ) respectively with Sm = TM = ∅ being the empty antichain.

To prove the proposition, we need to revisit the construction of f1 and introduce some notation.
Let Xi, Yi, Zj and Aj be as in the construction of f1. Now

• for every i ∈ [q], set X̃i := φ|Q(i) (note X̃i = Xi),

• for every i ∈ [q] set Ỹi := X̃i \ {X̃j : j ∈ Q, j <P i},
• for every j ∈ [M − 1] set Z̃j :=

⋂
i∈Tj Ỹi,

• for every j ∈ [M − 1] set Ãj := Z̃j \
(⋃

Tk∈ExtQ(Tj)
Z̃k

)
,

and finally set ÃM := [n] \
(⋃

j∈[M−1] Ãj

)
. To prove the proposition we must show that for every

k ∈ [M ], Ãk =
⋃
j: ∂QSj=Tk

Aj . To do this, we must first establish an important property of the

partition A = (A1, A2, . . . , Am).

Claim 5.5. For every j ∈ [m − 1] and every x ∈ Aj, we have that x ∈ φ(i) = Xi if and only if
i′ ≤P i for some i′ ∈ Sj.

Proof. Suppose x ∈ Aj . By construction of f1, for every i′ ∈ Sj we have x ∈ Xi′ = φ(i′). As φ is a
poset homomorphism, this implies x ∈ Xi = φ(i) for every i ∈ P with i′ ≤P i.
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For the reverse implication: let i ∈ P \ Sj be such that x ∈ Xi (we are done if i ∈ Sj). Without
loss of generality, we may assume i is ≤P -minimal with that property; that is, for every i′ ∈ P \ Sj
with i′ <P i, we have x /∈ Xi′ .

Since x ∈ Aj ⊆
⋂
i′∈Sj Yi′ , we must have x ∈ Yi′ for every i′ ∈ Sj . In particular x /∈ Xi′′ for any

i′′ ∈ P with i′′ <P i′ for some i′ ∈ Sj . Thus i cannot be below any element of Sj in the partial
order ≤P .

Suppose for contradiction that i was incomparable with every element of Sj . Then Sj′ = Sj ∪{i}
is an antichain in P extending Sj . Further, since i′ 6≤P i for any i′ ∈ Sj and since x /∈ Xi′ for any
i′ ∈ P \Sj with i′ <P i (by our minimality assumption on i), we have that x ∈ Yi. We already know
x ∈ Zj , so we deduce that x ∈ Zj′ = Zj ∩ Yi. But this implies x /∈ Aj ⊆ Zj \ Zj′ , a contradiction.

It follows that i′ ≤P i for some i′ ∈ Sj , as claimed. �

Claim 5.6. Let j ∈ [m]. If ∂QSj = Tk, then Aj ⊆ Ãk.

Proof. First suppose that j = m. In Remark 4.8 we observed that f2 is the inverse of f1. In
particular, by definition of f2, Am is precisely the set of x ∈ [n] such that x 6∈ φ(i) for all i ∈ P = [N ].

But for each i ∈ Q we have that φ(i) = Xi = X̃i. Thus by definition of the Ãj′ , this means x ∈ Am
cannot be an element in Ãj′ for any j′ ∈ [M − 1]. That is, Am ⊆ ÃM . Now by definition
∂QSM = ∅ = TM . So this proves the claim in this case.

We may therefore assume that j < m. Now suppose that ∂QSj = Tk = ∅, i.e. that k = M .

Suppose for a contradiction that there exists x ∈ [n] such that x ∈ Aj and x 6∈ ÃM . Then x ∈ Ãk′
for some k′ < M ; this further implies x ∈ X̃i = φ(i) for some i ∈ [q] = Q. We may assume i
is ≤Q-minimal in Q with respect to this property. By Claim 5.5, there is some i′ ∈ Sj such that
i′ ≤P i. This property together with the definition of ∂QSj (and our assumption of ≤Q-minimality

for i) ensures ∂QSj 6= ∅, a contradiction. Therefore x ∈ ÃM . Thus Aj ⊆ ÃM , as desired.
Finally, suppose Tk = ∂QSj with Tk, Sj 6= ∅. By definition of Tk = ∂QSj , for every i′ ∈ Tk there

exists i ∈ Sj with i ≤P i′. By Claim 5.5, this implies x ∈ X̃i′ = Xi′ for every i′ ∈ Tk.
Now consider i′′ ∈ Tk and i′ ∈ Q \ Tk with i′ <P i

′′. If x ∈ X̃i′ = Xi′ , then we must have i ≤P i′
for some i ∈ Sj , contradicting i′′ ∈ Tk = ∂QSj . Thus x /∈ X̃i′ for any i′ ∈ Q such that i′ <P i

′′, and

hence x ∈ Ỹi′′ . This in turn implies x ∈ Z̃k =
⋂
i′′∈Tk Ỹi′′ .

Now for any extension Tk′ of Tk in Q there exists i′′ ∈ Tk′ \ Tk. Suppose x ∈ X̃i′′ = Xi′′ . By
Claim 5.5, this implies there exists i ∈ Sj with i ≤P i′′. Since i′′ ∈ Q and i′′ /∈ Tk = ∂Q(Sj), this
implies there exists i′ ∈ Tk with i′ <P i

′′ by the definition of ∂Q(Sj), contradicting the fact that Tk′

is an antichain. Thus for any extension Tk′ of Tk in Q and every i′′ ∈ Tk′ \ Tk, x /∈ X̃i′′ , implying

in turn that x /∈ Z̃k′ .
In particular we have shown that x ∈ Ãk = Z̃k \

(⋃
Tk′∈ExtQ(Tk) Z̃k′

)
. Since x ∈ Aj was arbitrary,

we have Aj ⊆ Ãk as claimed. �

As f1(φ) = (A1, A2, . . . , Am) and f1(φ|Q) = (Ã1, Ã2, . . . , ÃM ) both form partitions of [n] (by

Lemma 4.2), Claim 5.6 immediately implies that Ãk =
⋃
j:∂QSj=Tk

Aj for all k ∈ [M ]. It follows

that ∂Q(f1(φ)) = f1(φ|Q) as desired, proving the proposition. �

Having made these definitions and related shadows to partitions for subposets, our final goal
in this section is to estimate the number of α-weighted partitions in [m][n]. For this purpose, we
introduce the entropy of a weighting α ∈ 4m to be

Hm(α) :=

m∑
j=1

−αj logαj .(5.2)
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(Note that here log denotes the natural logarithm and 0 log 0 := 0.) The entropy function Hm is a
well-studied object in combinatorics and discrete probability. It has a maximum value of logm in
4m, uniquely attained at α =

(
1
m ,

1
m , . . .

1
m

)
.

Proposition 5.7. Let m ∈ N and α ∈ 4m be fixed.
Then for any sequence ε = ε(n)→ 0 such that α± ε is feasible for every n, we have∣∣∣[m]

[n]
α±ε

∣∣∣= exp
(
Hm(α)n+O (log n)

)
.

Proof. For every β ∈ 4m which is feasible for n, we have by Stirling’s estimate for the factorial
that ∣∣∣[m]

[n]
β

∣∣∣= ( n

β1n, β2n, . . . , βm−1n

)
= exp

(
Hm(β)n+O(log n)

)
.(5.3)

Now there are at most

(2εn+ 1)m−1 = eO(log εn)(5.4)

weightings b which are both ε-close to α and feasible for m. Let B denote the family of all
such β. By continuity of the function Hm and the fact that ε = o(1), for all β ∈ B we have
Hm(β) = Hm(α) + o(1). Putting it all together, we have∣∣∣[m]

[n]
α±ε

∣∣∣= ∑
β∈B

∣∣∣[m]
[n]
β

∣∣∣= ∣∣∣B∣∣∣ exp
(
Hm(α)n+O(log n)

)
= exp

(
Hm(α)n+O(log n)

)
,

as desired. �

6. The existence threshold

6.1. The existence threshold. In this section, we shall determine the existence threshold for
copies of a fixed poset (P,≤P ) in a random subposet of (P(n),⊆). Explicitly, let p = e−cn. We let
P(n, p) be a p-random subset of P(n), obtained by retaining each element of P(n) independently
at random with probability p. This gives rise to a random poset (P(n, p),⊆). For which c does this
poset contain w.h.p. a copy of P — i.e. for which c is inj− homP (P(n, p)) w.h.p. non-empty?

To answer this question, we need to introduce two definitions.

Definition 6.1. Let (P,≤P ) be a poset with a(P ) = m. Let Q ⊆ P be a subposet of P with Q 6= ∅
and a(Q) = M . Given a weighting α ∈ 4m, let β = ∂Q(α) be the weighting from 4M induced by
α in Q (that is, β is the weighting obtained when applying (5.1)). We define the critical exponent
of Q in P with respect to α to be

cα,P (Q) :=
HM (β)

|Q|
.

Definition 6.2. Let (P,≤P ) be a poset with a(P ) = m. The critical exponent of P is defined to be

c?(P ) := sup
{
c ∈ R≥0 : ∃α ∈ 4m s.t. ∀Q : ∅ 6= Q ⊆ P, c ≤ cα,P (Q)

}
.

Remark 6.3. Equivalently, since 4m is compact and min{cα,P (Q) : ∅ 6= Q ⊆ P} is a continuous
function of α, we can express the critical exponent as:

c?(P ) = max
α∈4m

min
∅6=Q⊆P

cα,P (Q).

Theorem 6.4. Let (P,≤P ) be a finite poset. For c > 0 fixed and p = p(n) = e−cn, the following
hold:

(i) if c > c?(P ), then w.h.p. (P,≤P ) is not a subposet of (P(n, p),⊆);
(ii) if c < c?(P ), then w.h.p. (P,≤P ) is an induced subposet of (P(n, p),⊆).
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The proof of parts (i) and (ii) of Theorem 6.4 occupy the next two subsections. Before we dive
into these proofs, however, we should like to outline the main idea behind Theorem 6.4, which is
to look at certain “weighted” copies of P in P(n).

Definition 6.5 (Weighted copies of posets). Let (P,≤P ) be a poset with a(P ) = m. We define the
weight of φ ∈ inj− homP (P(n)) to be

wφ := w(f1(φ)),

where f1 is the injection inj− homP (P(n)) → [m][n] given in Lemma 4.2 and w is the weighting
from Definition 5.1. Given α ∈ 4m, we say φ is an α-weighted copy of P in P(n) if wφ = α.

By (5.3) the expected number of α-weighted copies of (P,≤P ) in (P(n, p),⊆) is

eHm(α)n+O(logn)p|P | = e|P |(cα,P (P )−c)n+O(logn).

Thus certainly for a fixed feasible weighting α, if c > cα,P (P ) then w.h.p. no such α-weighted
copies exist. Further by Proposition 5.4, an α-weighted copy of P can only exist in P(n, p) if
for every Q ⊆ P a β-weighted copy of Q exists, where β = ∂Q(α). This leads us to require
c ≤ minQ⊆P cα,P (Q), and to the statement of the theorem.

6.2. Proof of Theorem 6.4, part (i). Let (P,≤P ) be a poset with a(P ) = m. Suppose c =
c?(P ) + η, for some η > 0. For every Q ⊆ P , both cα,P (Q) and ∂Q(α) are continuous functions
of α in the compact set 4m. Since there are finitely many subposets Q: ∅ 6= Q ⊆ P , there exist
constants ε1, ε2 > 0 such that if ‖α−α′‖∞ < ε1, then for every Q ⊆ P

‖∂Q(α)− ∂Q(α′)‖∞ < ε2(6.1)

and

|cα,P (Q)− cα′,P (Q)| < η

2
(6.2)

both hold.
For α ∈ 4m, denote by Bε1(α) the open `∞-ball in 4m of radius ε1 centered at α. As 4m is

compact, there exists some finite set C ⊆ 4m such that the collection
{
Bε1(α) : α ∈ C

}
constitutes

an open cover for 4m. (In fact, since 4m has measure 1/m! and each Bε1(α) has measure at least

(ε1/m)m−1, it is not hard to show that one can take |C| ≤
(
C
ε1

)m
for some absolute constant C > 0.)

Now fix n ∈ N. For each α ∈ C, let B̃α denote the collection of α′ in Bε1(α) which are feasible
for n. Pick α ∈ C. By definition of c?(P ), we have that cα,P (Q) ≤ c?(P ) for some Q ∈ P . Set

M := a(Q). For every α′ ∈ B̃α, we have ‖α′ − α‖∞ < ε1. By (6.1) this implies that ∂Q(α′) is
ε2-close to ∂Q(α). Further by (6.2) we have

cα′,P (Q) ≤ cα,P (Q) +
η

2
≤ c?(P ) +

η

2
= c− η

2
.(6.3)

Combining (6.1), (5.4), (5.3), and (6.3), the expected number of β-weighted injective poset homo-

morphisms φ ∈ inj− homQ(P(n, p)) with β ∈ {∂Q(α′) : α′ ∈ B̃α} is at most

(2ε2n+ 1)M−1e|Q|(c−
η
2 )n+O(logn)p|Q| = e−

|Q|η
2
n+O(logn) = o(1).

By Markov’s inequality, we deduce that w.h.p. no such copy exists, which in turns implies by
Proposition 5.4 that w.h.p. P(n, p) contains no α′-weighted copy of P for α′ ∈ B̃α. Since α ∈ C
was arbitrary and C is finite, we deduce that w.h.p. P(n, p) contains no α′-weighted copy of P for

α′ ∈
⋃
α∈C B̃α. By construction of C, this latter union covers all weightings α′ ∈ 4m which are

feasible for n. Thus we deduce that for c = c?(P ) + η, η > 0, and p = e−cn the random poset
P(n, p) is w.h.p. P -free. This concludes the proof of Theorem 6.4, part (i). �
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6.3. Proof of Theorem 6.4, part (ii). Let (P,≤P ) be a poset with a(P ) = m. Suppose c =
c?(P ) − η for some η > 0. By definition of c?(P ), there exists α? ∈ 4m such that for all Q:
∅ 6= Q ⊆ P , we have cα?,P (Q) ≥ c?(P ). When n is sufficiently large there exists a weighting αf =
αf (n) ∈ 4∗m (i.e. αf has non-zero coordinates) such that αf is feasible for n and ‖αf−α?‖∞ < ε1,
where ε1 > 0 is the constant given in Section 6.2. By (6.2), for all non-empty Q ⊆ P , we have

cαf ,P (Q) ≥ c?(P )− η

2
= c+

η

2
.(6.4)

Write Φαf ,Q(P(n)) and Φαf ,Q(P(n, p)) for the collections of all ∂Q(αf )-weighted φ ∈ inj− homQ(P(n))
and φ ∈ inj− homQ(P(n, p)) respectively. By (5.3), for all non-empty Q ⊆ P ,

E
∣∣Φαf ,Q(P(n, p))

∣∣ =
∣∣Φαf ,Q(P(n))

∣∣p|Q| = e
|Q|cαf ,P (Q)n+O(logn)

e−c|Q|n
(6.4)

≥ e
|Q|η
2
n+O(logn),(6.5)

which tends to infinity as n → ∞. We shall use the celebrated Janson inequalities to show

P
(∣∣Φαf ,P (P(n, p))

∣∣ = 0
)

is small. To do this, we must first introduce some notation.

Given φ1, φ2 ∈ Φαf ,P (P(n)) and non-empty Q1, Q2 ⊆ P , we say that the pair (φ1, φ2) is (Q1, Q2)-
intersecting if φ1(Q1) = φ2(Q2) = φ1(P ) ∩ φ2(P ). Let I(Q1, Q2) denote the collection of all
(Q1, Q2)-intersecting pairs (φ1, φ2), and define

D :=
∑

Q1,Q2 6=∅

 ∑
(φ1,φ2)∈I(Q1,Q2)

P
(
φ1(P ) ∪ φ2(P ) ⊆ P(n, p)

) .

Set µ := E
∣∣Φαf ,P (P(n, p))

∣∣. We now apply the following inequalities due to Janson (see e.g. [14]).

Proposition 6.6 (Janson inequalities).

P
(∣∣Φαf ,P (P(n, p))

∣∣ = 0
)
≤

{
e−

µ2

2D if D ≥ µ,
e−µ+D

2 otherwise.

It thus remains to bound D. Observe first of all that

I(Q1, Q2) =
∣∣Φαf ,P (P(n))

∣∣2/∣∣Φαf ,Q1(P(n))
∣∣,(6.6)

since each copy of P in P(n) specifies a unique copy of Q1 and Q2, and since all copies ‘look the
same’, being given by partitions with exactly the same weight. Next, note that for any (Q1, Q2)-
intersecting pair (φ1, φ2) we have

P
(
φ1(P ) ∪ φ2(P ) ⊆ P(n, p)

)
= p2|P |−|Q1|.(6.7)

Putting (6.6), (6.7) and (6.5) together, we have∑
(φ1,φ2)∈I(Q1,Q2)

P
(
φ1(P ) ∪ φ2(P ) ⊆ P(n, p)

)
=

µ2

E
∣∣Φαf ,Q1(P(n, p))

∣∣ ≤ µ2e−
|Q1|η

2
n+O(logn).

Plugging this back into the definition of D we have

D ≤
∑

Q1⊆P : Q1 6=∅

∑
Q2⊆P : |Q2|=|Q1|

µ2e−
|Q1|η

2
n+O(logn) < 22|P |µ2e−

η
2
n+O(logn).

In particular, we have exp
(
−µ2/2D

)
= o(1). When D < µ, since we showed in (6.5) that µ→∞

(as n → ∞), we also have exp(−µ + D/2) ≤ exp (−µ/2) = o(1). It then follows from the Janson
inequalities (Proposition 6.6) that

P
(∣∣Φαf ,P (P(n, p))

∣∣ = 0
)

= o(1).
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Thus for c = c?(P )−η, η > 0, and p = e−cn, the random poset P(n, p) contains w.h.p. the image of
an αf -weighted injective poset homorphism φ : P → P(n). In particular, P is w.h.p. a subposet
of P(n, p).

Moreover, recall that αf ∈ 4∗m. That is, the weight of the copy P ′ of P we obtain in P(n, p) lies
in [m]∗. Since f2 is the inverse of f1, the moreover part of Lemma 4.5 implies that P ′ is in fact an
induced copy of P . This concludes the proof of Theorem 6.4, part (ii). �

Remark 6.7. The proof of Theorem 6.4 parts (i) and (ii) shows something slightly stronger than
we claimed. Namely, instead of having η > 0 fixed, we can run through the same arguments with
η = K log n/n for some sufficiently large constant K > 0. A little analysis shows we can take values
ε1, ε2 = O(η) and still satisfy (6.1) and (6.2). Using the bound |C| = O ((ε1)−m) and choosing K
sufficiently large to beat the O(log n) error terms, one then gets that

• if p ≤ e−c?(P )n−K logn, then w.h.p. P(n, p) contains no copy of P ;

• if p ≥ e−c?(P )n+K logn, then w.h.p. P(n, p) contains an induced copy of P .

Remark 6.8. The proof of Theorem 6.4 can also be used to derive a more general result about the
existence of induced copies of P with a specific embedding in P(n). Given a weighting α, we may
define cα(P ) := min∅6=Q⊆P cα,P (Q). Our proof demonstrates that cα(P ) is the threshold for the
existence of an α-weighted copy of P in (P(n, p),⊆).

Here we also note that since cα(P ) is continuous in α, there will be many different embeddings
of P in (P(n, p),⊆) as soon as p is strictly larger than the value given by c?(P ).

7. Computing c?(P ) in practice: general bounds and heuristics

Theorem 6.4 gives us the location of the threshold for the appearance of copies of a given poset
(P,≤P ) inside the random poset (P(n, p),⊆) in terms of the parameter

c?(P ) = max
α∈4a(P )

(
min
∅6=Q⊆P

Ha(Q)(∂Q(α))

|Q|

)
.(7.1)

In practice, this parameter is somewhat awkward to compute by hand, even for very small examples.
Of course, as it is the maximum of a continuous function over a compact set, we can obtain good
computational approximations for its value — though one should note that the complexity will
certainly grow exponentially in P (since we are optimising the value of α over an a(P )-dimensional

space, and minimising over all 2|P | − 1 nonempty subsets Q ⊆ P ).
In this section we prove some general bounds on c?(P ) and discuss heuristics for computing its

value exactly — heuristics that in particular were used to determine c?(P ) for the examples in the
next section. We begin by establishing some useful properties of the set of optimal weightings.
Given a poset P , let Opt(P ) denote the collection of weightings α ∈ 4a(P ) for which equality is

attained in (7.1), i.e. such that c?(P ) = min
{
cα,P (Q) : ∅ 6= Q ⊆ P

}
.

Proposition 7.1. Opt(P ) is a convex subset of 4a(P ).

Proof. Suppose α,β ∈ Opt(P ). Given θ ∈ [0, 1], consider the weighting γ = θα+ (1− θ)β. Clearly
γ ∈ 4a(P ). Fix any subposet Q with ∅ 6= Q ⊆ P . Since ∂Q : x 7→ δQ(x) is a linear operator from
4a(P ) to 4a(Q) and since the map x 7→ −x log x is concave, we have

cγ,P (Q) =
1

|Q|
Ha(Q)(∂Q(γ)) =

1

|Q|
Ha(Q) (θ∂Q (α) + (1− θ)∂Q (β))

≥ 1

|Q|
(
θHa(Q) (∂Q(α)) + (1− θ)Ha(Q) (∂Q(β))

)
= θcα,P (Q) + (1− θ)cβ,P (Q) ≥ c?(P ).

In particular it follows from the definition of c?(P ) in (7.1) that γ ∈ Opt(P ). Thus Opt(P ) is a
convex set as claimed. �
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A poset-automorphism of (P,≤P ) is a bijection φ : P → P such that both φ and its inverse are
poset homorphisms. Write Aut(P ) for the set of all poset-automorphisms of (P,≤P ). Then each
φ ∈ Aut(P ) induces a permutation on the elements of A(P ) = {S1, S2, . . . , Sa(P )}, with Sj sent
to the antichain φ(Sj) = {φ(i) : i ∈ Sj}. Similarly, each φ ∈ Aut(P ) gives rise to a permutation
of the space of weightings 4a(P ) via permutation of the coordinates, with α sent to the weighting
φ(α) defined by φ(α)i = αj if φ(Si) = Sj .

Given a poset (P,≤P ), its reverse is the poset (P,≤R(P )), where x ≤R(P ) y if and only if y ≤P x.
Thus the reverse of a poset is simply the poset obtained by reversing all inequalities. We say a poset
(P,≤P ) is reverse-symmetric if there exists a bijection φ from (P,≤P ) to its reverse (P,≤R(P )) such
that both φ and its inverse are poset homomorphisms. We refer to such a function φ, if it exists,
as reverse automorphism of P , and let R − Aut(P ) denote the set of all reverse automorphisms.
Analogously to ordinary automorphisms, reverse automorphisms induce permutations on A(P ) and
4a(P ).

Proposition 7.2. (i) φ (Opt(P )) = Opt(P ) for all φ ∈ Aut(P ).
(ii) If P is reverse-symmetric, then ψ (Opt(P )) = Opt(P ) for all ψ ∈ R−Aut(P ).

Proof. Clearly for any non-empty Q ⊆ P and φ ∈ Aut(P ) we have

cφ(α),P (Q) = cα,P (φ(Q)).

In particular, α ∈ Opt(P ) if and only if φ(α) ∈ Opt(P ). Similarly, for any ψ ∈ R − Aut(P ) we
have

cψ(α),P (Q) = cα,R(P )(ψ(Q)).

Now observe that the random poset R(P(n, p)) has the same distribution as P(n, p). In particular,
this immediately implies that for every reverse-symmetric poset P ,

c?(P ) = c?(R(P )),

and further, since P and R(P ) are isomorphic, that Opt(P ) = Opt(R(P )). Together with the
preceding equality, this shows that α ∈ Opt(P ) if and only if ψ(α) ∈ Opt(P ). �

Corollary 7.3. For every poset P , there exists an optimal weighting α ∈ Opt(P ) such that α
is invariant under the action of automorphisms of (P,≤P ). Further if P is reverse-symmetric
then this optimal weighting can in addition be taken to be invariant under the actions of reverse-
automorphisms of (P,≤P ).

Proof. Let AutInv(P ) denote the collection of weightings in 4a(P ) that are invariant under the
action of automorphisms φ ∈ Aut(P ). Similarly, let R−AutInv(P ) denote the collection of weight-
ings invariant under the action of automorphisms φ ∈ R−Aut(P ) (if any such automorphism exists
— otherwise let R−AutInv(P ) denote the whole of 4a(P )). By considering the uniform weighting
u, we have that AutInv(P ) and R−AutInv(P ) are non-empty sets, and it is easy to see that both
of them form closed convex subsets of 4a(P ).

Given α ∈ Opt(P ), consider

α̃ := Eφ∈Aut(P )φ(α).

By Proposition 7.2(i) and the convexity of Opt(P ), α̃ is an element of Opt(P ), and is easily seen
to be invariant under the action of automorphisms from Aut(P ). Thus AutInv(P ) ∩ Opt(P ) is a
non-empty closed and convex subset of 4a(P ), being the non-empty intersection of closed, convex
sets. Repeating the same argument mutatis mutandis starting with α ∈ AutInv(P ) ∩ Opt(P ), we
obtain in a similar way that R − AutInv(P ) ∩ AutInv(P ) ∩ Opt(P ) is a non-empty (closed and
convex) subset of 4a(P ). The corollary follows. �

For a non-connected poset P , we can reduce the computation of c?(P ) to its components.
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Lemma 7.4. If P is a poset which can be partitioned into non-empty sets P1 and P2 of mutually
incomparable elements, then

c?(P ) = min{c?(P1), c?(P2)}.

Proof. Since the Pi are subposets of P we have c?(P ) ≤ c′ := min{c?(P1), c?(P2)}.
It is easy to see that c?(P ) ≥ c′ also. Indeed, given any c < c′, let p = e−cn and note that

P(n, p) = P(n, p1) ∪ P(n, p2) for some p1, p2 where p1, p2 ≥ e−c
′′n and c ≤ c′′ < c′. As c′′ < c?(P1),

w.h.p. there is a copy P ′1 of P1 in P(n, p1). Notice that there is a constant d = d(P1) so that P(n)
contains a copy of P(n− d) that avoids P ′1. Further, as c′′ < c?(P2), w.h.p. P(n− d, p2) contains a
copy of P2. The last two sentences together imply that w.h.p. there is a copy P ′2 of P2 in P(n, p2)
that does not intersect P ′1. Together P ′1 and P ′2 yield a copy of P in P(n, p), as desired.

�

Next we consider some special classes of posets P where Opt(P ) consists of a single, very simple
weighting. By the remark immediately after the definition of entropy (equation (5.2)), we have that

for all posets P , cα,P (P ) ≤ log a(P )
|P | with equality attained if and only if α is the uniform weighting

u = u(P ) = ( 1
a(P ) ,

1
a(P ) , . . . ,

1
a(P )). In particular

c?(P ) ≤ log a(P )

|P |
(7.2)

holds for all P .

Remark 7.5. Set c := log(a(P ))/|P |. Then (by Theorem 1.1) p = e−cn is the threshold at which
the expected number of copies of P in P(n, p) becomes large. Further, for any P , the ‘typical’ copies
of P in P(n) are precisely those with weightings close to u(P ).

Definition 7.6. A poset (P,≤P ) is uniformly balanced if c?(P ) = log a(P )
|P | .

Remark 7.7. By the remark before (7.2), if P is uniformly balanced then necessarily Opt(P ) =
{u(P )}. A more general form of this result is proved in Proposition 7.10 below.

Checking whether a given poset (P,≤P ) is uniformly balanced is easy (though possibly tedious
if the poset is large): one runs over all possible non-empty subsets Q of P , computing the value

cu,P (Q) and checking whether or not it is greater or equal to log a(P )
|P | .

A finite poset P is bounded if it contains a unique ≤P -minimal and a unique ≤P -maximal element.
In such posets, we denote the unique minimum and maximum elements by min(P ) and max(P )
respectively. For bounded posets P , the upper bound c?(P ) ≤ log(a(P ))/|P | in (7.2) may be
improved as follows.

Proposition 7.8. Let (P,≤P ) be a bounded poset on |P | ≥ 2 elements. Let Q be the collection of
subposets Q of P containing both min(P ) and max(P ). Then

c?(P ) ≤ max
x∈[ 1

a(P )
, 1
2

]
min

{
H2(x),min

Q∈Q
− 1

|Q|

(
2x log x+ (1− 2x) log

(
1− 2x

a(Q)− 2

))}
.(7.3)

Proof. Denote by Q− and Q+ the one-element subposets of (P,≤P ) induced by {min(P )} and
{max(P )} respectively. By definition of c?(P ), we have

c?(P ) ≤ max
α∈∆m

min

{
cα,P (Q−), cα,P (Q+),min

Q∈Q
cα,P (Q)

}
.(7.4)

Consider a weighting α ∈ ∆m of A(P ). Then by definition

cα,P (Q−) = H2(α{min(P )}) and cα,P (Q+) = H2(α∅).(7.5)
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Observe that ∂Q(α)∅ = α∅ and ∂Q(α){min(P )} = α{min(P )}.
2 Since x 7→ −x log x is strictly concave

in [0, 1], we have that for any Q ∈ Q,

cα,P (Q) ≤ 1

|Q|

(
−α{min(P )} log(α{min(P )})− α∅ log(α∅)

− (a(Q)− 2)

(
1− α{min(P )} − α∅

a(Q)− 2

)
log

(
1− α{min(P )} − α∅

a(Q)− 2

))
,(7.6)

with equality holding if and only if ∂Q(α)S = (1 − α∅ − α{min(P )})/(a(Q) − 2) for all antichains

S ∈ A(Q) \ {∅, {min(P )}}. Setting x := α∅, y := α{min(P )}, R := {(x, y) ∈ [0, 1]2 : x+ y ≤ 1} and
combining (7.4), (7.5) and (7.6) we get

c?(P ) ≤ max
(x,y)∈R

min

{
H2(x), H2(y),min

Q∈Q

1

|Q|

(
−y log y − x log x− (1− x− y) log

(
1− x− y
a(Q)− 2

))}
.

It is then an easy exercise in optimisation to show that the maximum on the right hand side is
attained on the line x = y, and that for x = y the maximum is obtained for some x satisfying

1
a(P ) ≤ x ≤

1
2 , yielding the claimed upper bound on c?(P ). �

Definition 7.9. A bounded poset (P,≤P ) with |P | ≥ 2 elements is balanced if c?(P ) = H2(x?),
where x? = x?(P ) is the unique solution in [1/a(P ), 1/2] to the equation

H2(x) = − 1

|P |

(
2x log x+ (1− 2x) log

(
1− 2x

a(P )− 2

))
.

Proposition 7.10. If P is balanced then Opt(P ) = {b(P )}, where b = b(P ) is defined so that
bS := x?(P ) if S = ∅, {min(P )}, and bS := (1− 2x?(P ))/(a(P )− 2) otherwise.

Proof. Let f1(x) and f2(x, y) be the functions defined by f1(x) := − 1
|P |

(
2x log x+ (1− 2x) log

(
1−2x
a(P )−2

))
for x ∈ [0, 1] and f2(x, y) := 1

|P |

(
−y log y − x log x− (1− x− y) log

(
1−x−y
a(P )−2

))
for (x, y) ∈ R,

where R := {(x, y) ∈ [0, 1]2 : x+ y ≤ 1}. As observed in the proof of Proposition 7.8,

max
(x,y)∈R

min {H2(x), H2(y), f2(x, y)} = max
x∈[0,1]

{H2(x), f1(x)} = H2(x?) = f2(x?, x?),(7.7)

and this common maximum is uniquely attained at x = y = x?.
Consider any α ∈ Opt(P ). Let x′ := α∅, y

′ := α{min(P )}. Thus cα,P ({max(P )}) = H2(x′) and
cα,P ({min(P )}) = H2(y′). Further, by strict concavity of the function x 7→ −x log x, cα,P (P ) ≤
f2(x′, y′) and this inequality is strict unless αS = (1−x′−y′)/(a(P )−2) for all antichains S ∈ A(P )
with S 6= ∅, {min(P )}. Since α ∈ Opt(P ), we thus have

c?(P ) = min
∅6=Q⊆P

cα,P (Q) ≤ min
{
H2(x′), H2(y′), f2(x′, y′)

} (7.7)

≤ H2(x?) = c?(P ).

By the uniqueness of the maximum in (7.7) the last inequality immediately implies x′ = y′ = x?.
For these values of x′, y′, the first inequality is strict unless αS = (1 − 2x?)/(a(P ) − 2) for all
antichains S ∈ A(P ), as observed above. Thus α ∈ Opt(P ) implies α = b, as desired. �

The next simple proposition shows that a uniformly balanced poset is balanced; note the reverse
is not true (see the next section for an example).

2Note that here and elsewhere, we abuse notation slightly in order to ease the exposition. Explicitly, if the
antichains of P are enumerated as A(P ) = {S1, S2, . . . , Sa(P )}, we use the antichain Si in place of i as an index for

weightings in 4a(P ). So for example α{min(P )} := αi, where Si is the antichain {min(P )}.
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Proposition 7.11. Suppose P is a bounded poset on |P | ≥ 2 elements. If P is uniformly balanced
then it is balanced.

Proof. Let f1(x) be as in the proof of Proposition 7.10. Then by (7.3) we have

c?(P ) ≤ max
x∈[ 1

a(P )
, 1
2

]
min{H2(x), f1(x)} ≤ log a(P )

|P |
,(7.8)

where the rightmost inequality follows from the concavity of the function x 7→ −x log x. So if P is
uniformly balanced there is equality in (7.8). Thus,

c?(P ) = max
x∈[ 1

a(P )
, 1
2

]
min

{
H2(x), f1(x)

}
= H2(x?) = f1(x?),

and so P is balanced. �

Informally, a poset P is uniformly balanced if the first copy of P to appear in P(n, p) is a ‘typical’
copy of P in P(n). On the other hand a poset P is balanced if the first copy P ′ of P to appear in
P(n, p) is a ‘squashed’ version of a typical copy, in the following sense: let x? = x?(P ) be as above.
Then the sets Xmin(P ) and Xmax(P ) in P ′ corresponding to the ≤P -extremal elements min(P ) and

max(P ) are sitting in layers x?n and (1 − x?)n rather than in layers 1
a(P )n and (1 − 1

a(P ))n as

they would in a typical copy. (Recall that 1
a(P ) ≤ x?(P ) ≤ 1/2, so this means P ′ has been pushed

towards the middle layer relative to a typical copy of P in P(n).)

Giving an explicit value for c?(P ) when P is balanced is not straightforward — indeed we have
c?(P ) = H2(x?), where x? = x?(P ) is the unique solution to the equation

−x log x− (1− x) log(1− x) =
1

|P |

(
−2x log x− (1− 2x) log

(
1− 2x

a(P )− 2

))
in the interval [ 1

a(P ) ,
1
2 ]. To show P is balanced likewise entails some non-trivial computations:

one must consider the weighting b = b(P ) introduced in Proposition 7.10. Running over all non-
empty subposets Q ⊆ P , one must then check that cb,P (Q) ≥ cb,P (P ), which involves delicate
algebraic manipulations of entropic expressions involving x?. This can be done by hand for some
small or nicely structured examples, but requires computer assistance for even moderately-sized
posets P (unless they are very nicely structured indeed). However if one is content with numerical
approximations for c?(P ), then balanced posets are certainly quite easy to handle with the aid of
a computer.

What, however, does one do if P is not balanced? To prove a lower bound of the form c ≤ c?(P ),
we must find a ‘good’ α ∈ 4a(P ) such that cα,P (Q) ≥ c for all non-empty Q ⊆ P . This is in
principle an (a(P ) − 1)-dimensional problem, but using our earlier observations about the shape
Opt(P ), we can significantly reduce the dimension of the search-space.

Explicitly, let A(P ) = {S1, S2, . . . Sm}. Then Corollary 7.3 says there exists α ∈ Opt(P ) such
that for every φ ∈ Aut(P ) and Si ∈ A(P ),

αSi = αφ(Si),(7.9)

and if P is reverse-symmetric we in addition have that for every ψ ∈ R−Aut(P ) and Si ∈ A(P ),

αSi = αψ(Si).(7.10)

These inequalities can be used to reduce the number of unknown variables when solving the opti-
misation problem (7.1) to determine c?(P ).

Finally, suppose we believe that we can identify a balanced ‘core’ in P , that is some unique
non-empty Q? ⊆ P such that (Q?,≤P ) is balanced and such that we believe it is the non-existence
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of a copy of Q? which is the last obstruction to the appearance of a copy of P — i.e. as soon as
copies of Q? exist in P(n, p), then so will copies of P . This entails

c?(P ) = c?(Q) = cb,Q(Q),

where b = b(Q?) ∈ 4a(Q?) is the (unique) optimal balanced weighting of Q? as in Definition 7.9.

Corollary 7.12. If Q? is a balanced subposet of P with c?(Q?) = c?(P ), then for every α ∈ Opt(P ),

∂Q?(α) = b,(7.11)

where b ∈ 4a(Q?) is the optimal balanced weighting of Q?. �

The heuristic from (7.11) in conjunction with (7.9) and (7.10) can aid our computations of lower
bounds for c?(P ) by giving us extra constraints on the coordinates of an optimal weighting α ∈
4a(P ). It is worth noting that the existence of a (presumed) balanced ‘core’ is of course also helpful
for obtaining upper bounds on c?(P ), as noted in Proposition 7.8.

Given our work in this section, and considering the behaviour for small examples, it is natural to
wonder (a) whether or not Opt(P ) is always invariant under the action of automorphisms of P , and
(b) whether or not Opt(P ) always consists of a single point. The answer to both of these questions
turns out to be no. Let H1 be the poset obtained from C7 by adding two new element x1 and x2,
such that x1 <H1 y4 and y4 <H1 x2, with no other added relations, where y4 is the middle element
of the C7. We next assign all antichains from C7 the same weight w1 and all which contain either
x1 or x2 the weight w2. It is now straightforward, but a bit tedious, to check that c∗(H1) = c∗(C7)
and that this value is achieved for an interval of values for w2, thereby giving a negative answer to
the first question.

We can answer the second question by using a similar construction. Let H2 be obtained from
Ct, for odd t ≥ 11, by adding a copy of C(1, 2) and C(2, 1), and specifying that the middle element
y of the chain is below the copy of C(1, 2) and above the C(2, 1). For this poset we can assign a
uniform weight to the antichains in the Ct and a reversal invariant weight to the antichain which
contain elements not in the Ct. Here the weight of the two maximal elements of the C(1, 2) can
be made slightly different without changing the threshold. Apart from working out the explicit
entropies this can be seen by considering the up and down-sets from y in P(n); these are both
copies of P(n/2), and since our c is strictly less than half of c∗(C(1, 2)) both will contain copies
of C(1, 2). By Remark 6.8 we will also have copies where the maximal elements receive different
weights.

8. Computing c?(P ) in practice: some concrete examples

8.1. Chains, stars and wide diamonds. Let C(n1, n2, . . . , nt) denote the poset whose elements
come from t pairwise disjoint sets V1, V2, . . . , Vt with |Vi| = ni and x <P y precisely when x ∈ Vi
and y ∈ Vj for some i, j with 1 ≤ i < j ≤ t. When n1 = n2 = . . . nt = 1, we write Ct as a shorthand
for C(1, 1, . . . , 1). Thus Ct is the chain of length t, and is one of the simplest posets there is as far
as computing the parameter c?(P ) is concerned.

Theorem 8.1. For all integers t ≥ 2, Ct is uniformly balanced and satisfies

c?(Ct) =
log(t+ 1)

t
.

This result in fact already follows from the work of Kreuter [20], since every copy of the poset
Ct in P(n, p) is also an embedded copy of Ct viewed as a distributive lattice. Nevertheless, it is
worth giving a proof here as an illustration of the general technique for determining c?(P ) when P
is uniformly balanced.
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Proof. We may identify Ct with the integer set [t] = {1, 2, . . . , t} equipped with the usual order
relation <. The antichains of Ct are then A(Ct) = {{1}, {2}, . . . , {t}, ∅}. Consider the uniform
weighting u ∈ 4a(Ct), and a non-empty subposet Q ⊆ P with elements i1 < i2 < . . . < iq. This
subposet is also a chain, of length q, and its antichains are the singletons from Q together with the
empty antichain. Set i0 := 0 and iq+1 := t+ 1, and for each j ∈ [q+ 1] let xj := (ij − ij−1)/(t+ 1).
Then β = ∂Q(u) satisfies β{ij} = xj for each j ∈ [q] and β∅ = xq+1. By elementary properties

of entropy, subject to the constraints above, for a fixed q we have that Ha(Q)(β) is minimised by
Q = [q], x1 = x2 = · · · = xq = 1/(t+ 1) and xt+1 = 1− q/(t+ 1). Thus, as q ≤ t, we have

cu,Ct(Q) = −1

q

q+1∑
j=1

xj log xj ≥
1

q

(
q

t+ 1
log(t+ 1)−

(
t+ 1− q
t+ 1

)
log

(
t+ 1− q
t+ 1

))

=
1

t+ 1
log(t+ 1)−

(
1

q
− 1

t+ 1

)
log

(
t+ 1− q
t+ 1

)
≥ log(t+ 1)

t
= cu,Ct(Ct),

where the last inequality follows from the fact the expression on the left hand side is a non-increasing
function of q and q ≤ t. It follows from (7.2) that c?(Ct) = log(t+ 1)/t as claimed. �

Our second general family are the star posets C(1, t), which have a common threshold for t ≥ 2.

Theorem 8.2. Let x? denote the unique solution in [1
5 ,

1
2 ] to the equation

(1− x) log 2−H2(x) = 0.(8.1)

Then for all t ≥ 2, we have

c?(C(1, t)) = H2(x?) ≈ 0.5357390.

Proof. For the upper bound, consider the 2-leaved star C(1, 2). Let α ∈ Opt(C(1, 2)), and set
x := α{min(C(1,2))}. Then by standard properties of the entropy function, we have

c?(C(1, 2)) ≤ min
{
cα,C(1,2)({min(C(1, 2))}), cα,C(1,2)(C(1, 2))

}
≤ min

{
H2(x),

1

3

(
−x log x− (1− x) log

(
1− x

4

))}
.(8.2)

Now the function F1 : x 7→ H2(x) is increasing in [0, 1
2 ] and decreasing in [1

2 , 1], while the function

F2 : x 7→ 1
3

(
−x log x− (1− x) log

(
1−x

4

))
is increasing in [0, 1

5 ] and decreasing in [1
5 , 1]. Further,

we have F1(1
5) < F2(1

5) and F1(1
2) > F2(1

2). Thus there is a unique solution in the interval [1
5 ,

1
2 ] to

the equation F1(x) = F2(x). Rearranging terms, we see that this unique solution is precisely the
value x? from the statement of the theorem. Together with (8.2) this implies

c?(C(1, 2)) ≤ F1(x?) = H2(x?).

Since c?(C(1, t)) is non-increasing in t this establishes the upper bound in the theorem.
For the lower bound, we use a direct probabilistic argument. Let c be a fixed constant with c <

H2(x?), and let p = e−cn. Then by a standard Chernoff bound, w.h.p. P(n, p) contains an element
A0 with |A0| = bx?nc. Condition on this event, consider then Y = P(n, p)∩{X ∈ P(n) : A0 ( X}.
With our conditioning |Y | is a binomially distributed random variable with expected value(

2(1−x?)n − 1
)
p = en

(
(1−x?) log 2−c

)
+o(1) = en

(
H2(x?)−c

)
+o(1),

where in the last inequality we use the defining equation (8.1) for x?. Thus for c < H2(x?) fixed,
the expectation above is (exponentially) large, and a standard Chernoff bound shows that for any
fixed t, w.h.p. |Y | ≥ t. In particular this shows that for any fixed t, w.h.p. P(n, p) contains a copy
of C(1, t) (by considering A0 and any t elements from Y ), and c?(C(1, t)) ≥ H2(x?) as claimed. �
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The poset C(1, 2, 1) is in fact the Boolean lattice P(2), and better known in an extremal setting
as the diamond. Extending the methods of the previous proof we next determine the threshold
for the appearance for the broader class of t-wide diamonds C(1, t, 1), t ≥ 2, which again share a
common threshold for t ≥ 2.

Theorem 8.3. Let x? denote the unique solution in [1
6 ,

1
4 ] to the equation

2(1− 3x) log 2−H2(2x) = 0.(8.3)

Then for all t ≥ 2, we have

c?(C(1, t, 1)) = (1− 2x?) log 2 ≈ 0.389429.

Proof. For the upper bound, let us consider the diamond C(1, 2, 1) = P(2). This is a bounded
poset. Label the elements of C(1, 2, 1) as 1, 2, 3, 4 with 1 = max(P(2)) and 4 = min(P(2)).
Applying Proposition 7.8, we obtain

c?(P(2)) ≤ max
x∈[ 1

6
, 1
2

]
min

{
H2(x), min

Q∈{{1,4},P(2)}
− 1

|Q|

(
2x log x+ (1− 2x) log

(
1− 2x

a(Q)− 2

))}
≤ max

x∈[ 1
6
, 1
2

]
min

{
−1

2
(2x log x+ (1− 2x) log(1− 2x)) ,−1

4

(
2x log x+ (1− 2x) log

(
1− 2x

4

)})
=: max

x∈[ 1
6
, 1
2

]
min {F1(x), F2(x)} .

Now the function F1(x) is increasing in [1
6 ,

1
3 ] and decreasing in [1

3 ,
1
2 ], while the function F2(x) is

decreasing in [1
6 ,

1
2 ]. Further, we have F1(1

6) < F2(1
6) and F1(1

4) = 3
4 log 2 > 5

8 log 2 = F2(1
4). Thus

there is a unique solution in the interval [1
6 ,

1
4 ] to the equation F1(x) = F2(x). Rearranging terms,

we see that this unique solution is precisely the value x? from the statement of the theorem. We
then have

c?(P(2)) ≤ max
x∈[ 1

6
, 1
2

]
min {F1(x), F2(x)} = F1(x?) = (1− 2x?) log 2,

where for the equality we used F1(x?) = 1
2H2(2x?) + x? log 2. Since c?(C(1, t, 1)) is non-increasing

in t, this establishes the upper bound in the theorem.

For the lower bound, we use a direct probabilistic argument. Let c be a fixed constant with
c < (1 − 2x?) log 2 and set p = e−cn. Let N denote the number of pairs of sets (A,B) with
A,B ∈ P(n, p), A ⊂ B and n− |B| = |A| = bx?nc. We have

EN =

(
n

bx?nc, bx?nc

)
p2 = exp ((−2x? log x? − (1− 2x?) log(1− 2x?)− 2c)n+ o(n))

= exp (n (2(1− 2x?) log 2− 2c) + o(n)) ,(8.4)

which by our assumption on c tends to infinity as n→∞. Now

E
(
N2
)
≤ (EN)2 +

(
2

(
n− bx?nc
bx?nc

)
p+ 1

)
EN

= (EN)2 + EN (exp ((H2(2x?)−H2(x?) + 2x? log 2− c)n+ o(n)) + 1) .(8.5)

Using H2(2x?) = 2(1− 3x?) log 2, we have

(2(1− 2x?) log 2− 2c)− (H2(2x?)−H2(x?) + 2x? log 2− c) = H2(x?)− c
> H2(x?)− (1− 2x?) log 2 > 0.(8.6)

Combining (8.4), (8.5) and (8.6) we have that E
(
N2
)

= (1 + o(1)) (EN)2, and hence that VarN =

o(EN2). A simple application of Chebyshev’s inequality then tells us that N is concentrated around
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its mean and in particular that w.h.p. there exists some pair (A0, B0) satisfying A0, B0 ∈ P(n, p),
|A0| = n−|B0|bx?nc and A0 ⊆ B0. Conditioning on this event, consider the binomially distributed
random variable Y = P(n, p) ∩ {X ∈ P(n) : A0 ( X ( B}. Then with our conditioning |Y | is a
binomially distributed random variable with expected value at least(

2(1−2x?)n − 2
)
p = en

(
(1−2x?) log 2−c

)
+o(1).

Since c < (1 − 2x?) log 2, the expectation above is (exponentially) large, and a standard Chernoff
bound shows that for any fixed t, w.h.p. |Y | ≥ t. In particular this shows that for any fixed t,
w.h.p. P(n, p) contains a copy of C(1, t, 1) (by considering A0, B0 and any t elements from Y ), and
c?(C(1, t, 1)) ≥ (1− 2x?) log 2 as claimed. �

The trick we used in the proofs of the lower bounds for c?(P ) in Theorem 8.2 and Theorem 8.3 of
first finding suitable images for the top and/or bottom elements of P in P(n, p) is applicable more
generally. Given a poset Q, let C(1, Q) denote the poset obtained by adding a new element b to Q
together with the relations b < q for all q ∈ Q. Similarly, let C(1, Q, 1) denote the poset obtained
from Q by adding two new elements b, t together with the relations b < q < t for all q ∈ Q.

Proposition 8.4. Let Q be a finite poset.

(i) Let x? be the unique solution in [0, 1/2] to

(1− x?)c?(Q)−H2(x?) = 0.

Then c?(C(1, Q)) ≥ H2(x?).
(ii) Let x? be the unique solution in [0, 1/2] to

2(1− 2x?)c?(Q)− 2x log 2−H2(x?) = 0.

Then c?(C(1, Q, 1)) ≥ H2(x?).

Note that in both cases it is easy to see that the solution x? is unique: we have a decreasing
linear function fighting against a concave entropy function that attains its maximum at x = 1/2,
and c?(Q) ≤ log 2, so considering the values of the functions at 0 and 1/2 shows the solution will
occur in this interval.

Proof. Identical to the lower bound proofs in Theorems 8.2, 8.3 with the single change that instead
of counting the binomially distributed number of points Y in the subcube above A0/between A0

and B0 that we are investigating, we use instead the fact that p is above the threshold for the
existence of a copy of Q in a subcube of that dimension. �

Finally, we record bounds on c?(P ) for P = C`(t) = C(t, t, . . . , t), which is the poset obtained
for the chain of length ` by replacing each element by an antichain of size t.

Proposition 8.5. For all `, t ∈ N, we have

log 2

`
≤ c?(C`(t)) ≤

log 2

`
+

log
(
`− (`− 1)2−t

)
`t

.

Note the lower bound is asymptotically tight as t→∞.

Proof. For the lower bound, let t`i=1Ai be an equipartition of [n]. Suppose c < (log 2)/` is fixed,
and set p = e−cn. Let Yi = P(n, p) ∩ {X ∈ P(n) :

⋃
j<iAj ⊆ X (

⋃
j≤iAj}. Clearly the

|Yi| are independent binomially distributed random variables, each with EYi =
(
2|Ai| − 1

)
p =

exp
((

log 2
` − c

)
n+ o(n)

)
. In particular our choice of c ensures that w.h.p. |Yi| > t for all i.

Taking any t elements from each of the Yi then yields a copy of C`(t) in P(n, p). It follows that
c?(C`(t)) ≥ (log 2)/` as claimed.

For the upper bound, we simply appeal to (7.2), noting that a (C`(t)) = `2t − (`− 1). �
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8.2. Universality. Our next aim is to establish the existence of a universality threshold cu, such
that for c smaller than cu almost all fixed posets appear in P(n, p).

In 1975 Kleitman and Rotschild [17] gave a structural description of a typical poset on N el-
ements. Given a ground set VN of N elements, define a class of posets AN on VN as follows.
For every member P of AN , we have a partition of VN into three antichains L1, L2, L3 such that
||Li| − N/4| <

√
N log(N) for i = 1, 3 and ||Li| − N/2| < log(N) for i = 2, together with the

following poset relations: for every x ∈ L1 and y ∈ L3, x <P y; for every x ∈ L1 and y ∈ L2, either
x <P y or x and y are incomparable in P ; likewise for every x ∈ L2 and y ∈ L3, either x <P y or
x and y are incomparable in P .

Theorem 8.6 (Kleitman and Rotschild, 1975). Asymptotically almost every poset on a set VN of

N (labelled) elements belongs to AN , i.e. limN→∞
|PN |
|AN | = 1, where PN denotes the collection of all

posets on VN .

One consequence of this theorem is that if we consider the uniform probability measure on AN ,
by making each relation between elements from L1, L2 and L2, L3 exist with probability 1/2, then
the corresponding random poset will be contiguous with the uniform distribution on PN , in the
sense that the asymptotic 0/1 events of the two distributions agree. See [15] for a more detailed
discussion of contiguous random models.

Using the Kleitman–Rotschild theorem we can establish a universality result for the appearance
of posets on N elements as subposets of P(n, p).

Theorem 8.7. Almost all posets P on N elements satisfy

c?(P ) =
log 2

3
+O

(
1

logN

)
,

where the lower order term is positive.

Proof. By Theorem 8.6, it is enough to show that for a uniformly chosen random poset P from AN
we have that w.h.p. c?(P ) = (log 2)/3 +O (1/ logN).

For the lower bound, note that every poset P in AN is clearly a subposet of C(N,N,N) = C3(N).
Thus c?(P ) ≥ c?(C3(N)), which by Proposition 8.5 is at least (log 2)/3.

For the upper bound, it is an easy exercise in discrete probability to show that there is a
constant b > 0, such that w.h.p. a uniformly chosen random poset P from AN contains a copy of
C(t, t, t) = C3(t), where t = db logNe. For such a P , we thus have c?(P ) ≤ c?(C(t, t, t)), which by
Proposition 8.5 is at most (log 2)/3 +O (1/ logN). �

8.3. Small examples. We now turn to examples of computations of the exact or approximate
value of c?(P ) for various small posets P , including some of the posets used for our Ramsey results
in the next section.

Write V for the 3-element poset on {A,B,C} with A <V B, A <V C. Thus V = C(1, 2). Set
also Λ to be the reverse of V , i.e. the 3-element poset on {A,B,C} with A >Λ B,C. Theorem 8.2
determined c?(V ). Now for any poset P , c?(P ) = c?(R(P )) (since R(P(n, p)) and P(n, p) have the
same distribution). Thus Theorem 8.2 also determined c?(Λ). Combining this with Theorem 8.1
we thus have the existence thresholds for all posets P on at most 3 elements.

Next, let Λ′ be the poset obtained from Λ by adding two elements D,E and the relations
B >Λ′ D and C >Λ′ E. Let Y denote the poset on {A,B,C,D} defined by the relations A <Y B
and B <Y C,D (so Y = C(1, 1, 2). Let Y ′ denote the poset obtained from Y by adding two new
elements E,F and the relations A <Y ′ E <Y ′ F . Let Y ′′ be the poset obtained from Y ′ by adding
four new elements G,H, I, J and the relations G <Y ′′ A and G <Y ′′ H <Y ′′ I <Y ′′ J .
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Further let T2 denote the binary tree of height 3, which is the poset obtained from Y ′ by adding
a new element G and the relation E <T2 G. Let F denote the fish-like poset obtained from T2 by
identifying the elements D and F .

We will also need results about the existence thresholds of the ‘long Y ’ C(1, 1, 1, 2), of C(2, 3, 2),
of the kite-like poset C(1, 1, 2, 1), of the double diamond DD, which is obtained from C(1, 2, 2, 1)
by removing one of the inequalities between the elements in the second and third layer. Finally we
will need to know the existence thresholds for C(1, 2, 1, 2, 1) (a diamond on top of a diamond), and
for the poset H defined by the Hasse diagram in Figure 2.

In Figure 1 we display the Hasse diagrams for some of these posets. Using the bounds from the
previous sections we have computed the threshold for all connected posets on at most four elements,
and some of the additional examples which we will use in our results on Ramsey thresholds. In some
cases we have to settle for upper and lower bounds on the threshold. These results are compiled
in Table 1. For uniform and balanced posets we state a numerical version of the exact threshold
in the lower bound column of the table. For general posets we state the best lower bound we have
found by a numerical procedure, and the best upper bound found by either using the simple upper

bound log a(P )
|P | or the best upper bound for a subposet for P . In the final column of the table we

state which class the posets belongs to, and we include the label Exact for posets which do not
belong to our general classes but for which we can nonetheless determine the exact value of the
threshold (in terms of the solution to an equation involving entropy functions).

We have already seen several examples of families of posets with identical thresholds, in particular
C(1, t) and C(1, t, 1) for t ≥ 2, and for these we only include the smallest member in the table.
There are a few posets P for which the bounds on c?(P ) that we obtain are very close, and where
the thresholds should in fact be the same, for instance Y and Y ′.

Conjecture 8.8. c?(Y ) = c?(Y
′).

9. Ramsey thresholds for posets

9.1. Ramsey exponents. Given non-empty posets P,Q,R, we say that R is (P,Q)-Ramsey if in
every 2-colouring of the elements of R, there is either a copy of P in colour 1 or a copy of Q in colour
2. We write R → (P,Q) if R is (P,Q)-Ramsey, and R 6→ (P,Q) otherwise. The poset Ramsey
number R(P,Q) of the pair (P,Q) is defined to be the least N ∈ N such that P(N) → (P,Q).
Recall from the introduction that this number exists and is finite for every (P,Q). In this section,
we consider the problem of determining the range of p = e−cn for which w.h.p. P(n, p)→ (P,Q).

Define the lower and upper Ramsey exponents of (P,Q) cRam−(P,Q) and cRam+(P,Q) to be

cRam−(P,Q) := sup
{
c > 0 : P(n, e−cn)→ (P,Q) holds w.h.p.

}
and

cRam+(P,Q) := inf
{
c > 0 : P(n, e−cn) 6→ (P,Q) holds w.h.p.

}
.

Clearly

0 ≤ c? (P(R(P,Q))) ≤ cRam−(P,Q) ≤ cRam+(P,Q) ≤ max {c?(P ), c?(Q)} ,

so these exponents are well-defined. If cRam−(P,Q) = cRam+(P,Q), then with say that their
common value is the critical Ramsey exponent for (P,Q), and denote it by cRam(P,Q).

Conjecture 9.1. For every pair of fixed posets (P,Q), cRam(P,Q) exists.

More generally, rather than a pair of posets (P,Q) we may consider Ramsey problems for pairs
of families of posets (P,Q). We write R → (P,Q) if R is (P,Q)-Ramsey, i.e. if every 2-colouring
of R contains a copy of a member of P in colour 1 or a member of Q in colour 2. We extend
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Name L.b. U.b. Class

C(2) 0.549306. . . Uniform
V = C(1, 2) 0.53573885. . . Exact

A2 0.51986038. . . Uniform
C(2, 2) 0.48647753. . . Uniform
C(3) 0.462098. . . Uniform

A1 0.4620981202 0.4620981203 General
Λ′ 0.455914351 0.46051702 General

C(1, 2, 1) 0.447699551. . . Balanced
Y 0.44769950088 0.44793987 General
Y ′ 0.44769951418 0.44793987 General
T2 0.4474689916 0.44793987 General
F 0.43238626 0.43984289 General

C(2, 1, 2) 0.415888308. . . Uniform
C(1, 2, 2) 0.415507009 0.4158883 General

C(4) 0.402359. . . Uniform
C(1, 1, 2, 1) 0.3891411 0.38918203 General
C(1, 1, 1, 2) 0.3891411 0.38918203 General

Y ′′ 0.38890390 0.38918203 General
DD 0.3816641132. . . Balanced

C(2, 3, 2) 0.376783 0.3770081 General
P(3) 0.36356411. . . Uniform

C(1, 2, 1, 2, 1) 0.3289037390. . . Uniform
H 0.3250121326 0.328903 General

Table 1. Thresholds for small posets

our definitions of poset Ramsey numbers and Ramsey exponents from poset pairs (P,Q) to poset
family pairs (P,Q) in the natural way.

9.2. General bounds. Let P,Q be posets such that P has a unique ≤P -maximal element and Q
has a unique ≤Q-minimal element. Define the Q–on–P poset T = T (P,Q) by taking disjoint copies
of P and Q, identifying max(P ) with min(Q) and adding the relation p ≤T q for every p ∈ P ,
q ∈ Q.

Theorem 9.2. For every pair of fixed posets P,Q such that P has a unique ≤P -maximal element
and Q has a unique ≤Q-minimal element, we have

cRam+(P,Q) ≤ c?(T (P,Q)).

Proof. Let c > c?(T (P,Q)). Then for p = e−cn, w.h.p. P(n, p) contains no copy of T (P,Q).
Condition on this event and colour the elements of P(n, p) as follows. Given an element x ∈ P (n, p),
assign it colour 2 if it is the unique maximal element in a (not necessarily induced) copy of P in
P(n, p), and otherwise assign it colour 1.

Clearly in this colouring there is no monochromatic copy of P in colour 1, since by construction
the maximal element is in colour 2. Further, there is no monochromatic copy Q′ of Q in colour
2, otherwise there must be a copy of P ′ of P in P(n, p) such that max(P ′) = min(Q′). But then
P ′ ∪Q′ contains a copy of T (P,Q), a contradiction. �
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Figure 1. Small posets

Given posets P,Q we may define their lexicographic product P ×lexQ to be the poset on P ×Q :=
{(p, q) : p ∈ P, q ∈ Q} with partial order ≤ defined by (p, q) ≤ (p′, q′) if and only if either p <P p

′

or p = p′ and q ≤Q q′.

Theorem 9.3. For every pair of fixed posets P,Q, we have

c?(P ×lex Q) ≤ cRam−(P,Q).

Proof. We claim that P ×lex Q is (P,Q)-Ramsey. Indeed consider any 2-colouring of P ×Q. If for
any p ∈ P the set {p} ×Q is monochromatic in colour 2, then this gives us a copy of Q in colour 2
inside P ×lex Q. Otherwise for every p ∈ P there exists qp ∈ Q such that (p, qp) received colour 1.
Then the set {(p, qp) : p ∈ P} gives us a copy of P in colour 1 inside P ×lex Q.

Thus P ×lex Q→ (P,Q) as claimed, and the theorem follows immediately from that fact. �

9.3. Specific posets. In this subsection, we give bounds on the Ramsey exponents for (P,Q) for
various pairs of small posets P and Q.

Theorem 9.4 (Kreuter [20]). For all s, t ≥ 2, cRam(Cs, Ct) = c?(Cs+t−1).

Proof. For the upper bound, we have by Theorem 9.2 that cRam+(Cs, Ct) ≤ c?(T (Cs, Ct)) =
c?(Cs+t−1). For the lower bound, observe that by the pigeonhole principle Cs+t−1 → (Cs, Ct). �
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Theorem 9.5. cRam(V, V ) = c?(T2).

Proof. For the upper bound, we use a slight variant of the colouring given in the proof of Theo-
rem 9.2. Assign an element X ∈ P(n, p) the colour 1 if there exists Y,Z ∈ P(n, p) with X ( Y,Z
(i.e. if X is the minimal element of a copy of V in P(n, p)), and otherwise assign X the colour
2. By construction, there is no monochromatic copy of V in colour 2. Suppose now there exists a
monochromatic copy of V in colour 1. By construction of our colouring, this implies the existence
of one of the following: a copy of the binary tree T2 of height 3, a copy of the poset F obtained
from T2 by identifying the elements D and E, or a copy of C(1, 2, 2). In particular, this shows

cRam+(V, V ) ≤ max {c?(T2), c?(F ), c?(C(1, 2, 2)} = c?(T2),

where the last equality follows from the bounds given in Section 8.3. For the lower bound, it is
easily checked that T2 → (V, V ), whence cRam−(V, V ) ≥ c?(T2). �

Clearly a poset H is (P,Q)-Ramsey if and only if its reverse R(H) is (R(P ), R(Q))-Ramsey
for the pair of reverse posets R(P ), R(Q). Since R(P(n, p)) has exactly the same distribution
as P(n, p), the Ramsey exponents for (P,Q) and (R(P ), R(Q)) are equal for all pairs (P,Q). In
particular, Theorem 9.5 also determines cRam(Λ,Λ). Thus Theorems 9.4–9.5 together determine
the critical Ramsey exponents for all pairs (P, P ) with |P | ≤ 3. For mixed pairs (P,Q), we can
give the following bounds on the Ramsey exponents.

Theorem 9.6. The following hold:

(i) c?(Y
′) ≤ cRam−(C2, V ) ≤ cRam+(C2, V ) ≤ c?(Y );

(ii) c?(C(2, 3, 2)) ≤ cRam−(Λ, V ) ≤ cRam+(Λ, V ) ≤ c?(C(2, 1, 2));
(iii) c?(Y

′′) ≤ cRam−(C3, V ) ≤ cRam+(C3, V ) ≤ c?(T (C3, V )) = c?(C(1, 1, 1, 2));
(iv) c?(C(2, 1, 2)) ≤ cRam−({V,Λ}, {V,Λ}) ≤ cRam+({V,Λ}, C2) ≤ c?(Λ′);
(v) c?(DD) ≤ cRam−(P(2), C2) ≤ cRam+(P(2), C2) ≤ c?(T (C2,P(2))) = c?(C(1, 1, 2, 1)).

Proof. (i) For the upper bound, Theorem 9.2 implies cRam+(C2, V ) ≤ c?(T (C2, V )) = c?(Y ). For
the lower bound, it is easily checked that Y ′ → (C2, V ).

(ii) For the upper bound, Theorem 9.2 implies cRam+(Λ, V ) ≤ c?(T (Λ, V )) = c?(C(2, 1, 2)).
For the lower bound, we claim that C(2, 3, 2) → (Λ, V ). Indeed, suppose the bottom two

elements of C(2, 3, 2) both received colour 1. Since C(3, 2) → (C1, V ), this would give us
either a Λ in colour 1 or a V in colour 2. On the other hand, suppose that the bottom two
elements of C(2, 3, 2) both received colour 2. Since C(3, 2)→ (Λ, C1 tC1), this would give us
either a Λ in colour 1 or a V in colour 2.

We may thus assume that one of the bottom elements of C(2, 3, 2) receives colour 1 and
the other receives colour 2. By symmetry, the same is true of the top elements of C(2, 3, 2).
By the pigeonhole principle, at least two elements in the middle layer of C(2, 3, 2) are in the
same colour, say 1. Thus we have a C3 (and hence a Λ) in colour 1. Thus C(2, 3, 2)→ (Λ, V )
as claimed.

(iii) For the upper bound, Theorem 9.2 implies cRam+(C3, V ) ≤ c?(T (C3, V )) = c?(C(1, 1, 1, 2)).
For the lower bound, we claim that Y ′′ → (C3, V ). Indeed, suppose the bottom element of

Y ′′ is in colour 2. If both of the branches of Y ′′ above this minimum element contain elements
in colour 2, then we have a copy of V in colour 2. Otherwise one of the branches receives only
the colour 1, and hence gives us a copy of C3 in colour 1.

Assume therefore that the bottom element of Y ′′ is in colour 1. One of the branches of Y ′′

above this bottom element is a copy of Y ′, which as we observed in part (i) is (C2, V )-Ramsey.
Thus in that branch we either get a copy of V in colour 2 or a copy of C2 in colour 1, which
together with the bottom element of Y ′′ gives us a copy of C3 in colour 2.
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(iv) For the upper bound, assign each vertex in P(n, p) the colour 1 if it is the top element of a
copy of C2 in P(n, p), and assign it the colour 2 otherwise. Clearly in such a colouring there
can be no copy of C2 in colour 2. Further a copy of V in colour 1 would require the existence
of a copy of Y , while a copy of Λ in colour 1 would require the existence of Λ′ or P(2). Thus
we have

cRam+({Λ, V }, C2) ≤ max
{
c?(Y ), c?(P(2)), c?(Λ

′)
}

= c?(Λ
′).

For the lower, bound, by considering the colour of the middle element, it is easy to see that
C(2, 1, 2) is ({V,Λ}, {V,Λ})-Ramsey.

(v) For the upper bound, Theorem 9.2 implies cRam+(C2,P(2)) ≤ c?(T (C2,P(2))) = c?(C(1, 1, 2, 1)).
For the lower bound, we claim the double diamond DD is (P(2), C2)-Ramsey. Indeed,

suppose the bottom element of DD receives colour 2. If any element above it is in colour 2
we have a C2 in colour 2. Otherwise DD contains a copy of P(2) in colour 1. By reverse-
symmetry, we are similarly done if the top element of DD receives colour 2.

On the other hand, suppose both the bottom and the top elements of DD are in colour 1.
Then if any two of the other elements of DD are in colour 1 we have a copy of P(2) in colour
1. Otherwise, at least three of the ‘middle’ elements of P(2) are in colour 2, and two of these
will give us a copy of C2 in colour 2.

�

Next we turn our attention to the Ramsey problem for the diamond P(2). Let H be the poset
defined by the Hasse diagram in Figure 2.

v1

v3

v4 v7 v8

v10

v11

v2

v5 v6

v9

Figure 2. The Hasse diagram of the poset H

Theorem 9.7. c?(H) ≤ cRam−(P(2),P(2)) ≤ cRam+(P(2),P(2)) ≤ c?(C(1, 2, 1, 2, 1))
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Proof. The upper bound on cRam+(P(2),P(2)) is an immediate consequence of Theorem 9.2 and
the fact that T (P(2),P(2)) = C(1, 2, 1, 2, 1). For the lower bound, it suffices to show that H is
(P(2),P(2))-Ramsey.

Consider any red-blue colouring of the elements of H. Suppose for a contradiction that there
does not exist a monochromatic copy of P(2). Without loss of generality we may assume that the
maximal element v1 in H is coloured red.

(a) If the minimal element v11 is coloured red, then at most one element in H \{v1, v11} is coloured
red. Indeed, otherwise we obtain a red copy of P(2) in H. However, then H \{v1, v11} contains
two disjoint copies of P(2), at least one of which is blue, a contradiction. Thus, the minimal
element v11 is coloured blue.

(b) If both v9 and v10 are coloured blue, then v2, v3, v6 are coloured red (else we get a blue P(2)).
However, then v1, v2, v3, v6 induce a red P(2) in H. So at least one of v9 and v10 is coloured
red. Without loss of generality assume v9 is coloured red.

(c) Suppose v2 is blue. Then at most one of v4, v5, v6 is blue (else we obtain a blue copy of P(2)
with maximal element v2 and minimal element v11). However, at most one of v4, v5, v6 is red
(else we obtain a red copy of P(2) with maximal element v1 and minimal element v9). This is
a contradiction, so v2 is coloured red.

(d) This implies v3 is coloured blue (else v1, v2, v3, v9 induce a red P(2)).
(e) By symmetry with step (c), this implies v10 is blue.
(f) Note that if v6 is red, together with v1, v2 and v9 it induces a red C4, (which contains P(2) as

a subposet). If v6 is blue, together with v3, v10 and v11 it induces a blue C4. In either case we
obtain a monochromatic copy of P(2), a contradiction. Thus, H is indeed (P(2),P(2))-Ramsey,
as claimed.

�

Finally we note that Theorem 8.6 shows that most posets have height 3 and this makes it possible
to find an interval which contains the Ramsey threshold for almost all posets.

Theorem 9.8. There exists constants log 2
5 ≤ c−ru ≤ c+

ru ≤
log 2

3 such that almost all posets P on N
elements satisfy c−ru ≤ cRam−(P, P ) ≤ cRam+(P, P ) ≤ c+

ru +O(1/ logN).

Proof. For every poset P we have that cRam+(P, P ) ≤ c?(P ). Thus Theorem 8.7 implies the upper
bound.

Recall from Theorem 8.6 that asymptotically almost every poset on a fixed set of N elements
belongs to AN , and that every poset P in AN is a subposet of C(N,N,N) = C3(N). So

cRam−(C3(N), C3(N)) ≤ cRam−(P, P ) ≤ cRam+(P, P ).

For c < log(2)
5 and p = e−cn, by Proposition 8.5, P(n, p) w.h.p. contains a copy of C5(2N − 1);

any two-colouring of C5(2N − 1) will contain a monochromatic copy of C3(N) and hence also a
monochromatic copy of P . Thus the two exponents lie in the stated interval. �

We believe that this result can be sharpened to give a single universality exponent. As we noted
in the proof of Theorem 8.7, there is a constant b such that w.h.p. a poset P from AN contains a
copy of C3(t) with t = db logNe. Hence, in order to be (P, P )-Ramsey the random poset must also
be (C3(t), C3(t))-Ramsey and hence c+

ru ≤ cRam+(C3(t)). Since the sequences cRam−(C3(N), C3(N))
and cRam+(C3(N)), C3(N)) are both bounded and non-increasing in N , they both converge to limits
that give a lower bound on c−ru and an upper bound on c+

ru respectively. However by Conjecture 9.1
these limits should be the same, which would imply the following.

Conjecture 9.9. There exists a constant cru = limN→∞ cRam−(C3(N)) such that almost all posets
P on N elements have cru ≤ cRam−(P, P ) ≤ cRam+(P, P ) ≤ cru +O(1/ logN)
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Question 9.10. What is the value of limN→∞ cRam−(C3(N))?

10. Open problems

In addition to Conjecture 9.1 about the existence of Ramsey exponents and the obvious problem
of tightening our Ramsey results, many other open problems remain.

Question 10.1.

• Is C(n, n) uniformly balanced for all n?
• Is C(n1, n2, n1) uniformly balanced if n1 ≥ n2?

Let Zt be the poset whose Hasse graph is obtained from a path on t vertices by giving the edges
alternating directions. The number of antichains in Zt is given by the Fibonacci numbers, which

implies that c?(Zt) ≤ log 1+
√

5
2 +O(t−1). On the other hand, (log 2)/2 is a lower bound for c?(Zt),

since Zt is a subposet of C(t/2, t/2). This leaves a small gap which it would be nice to close.

Question 10.2. What is c?(Zt)?

Something which we have touched upon in the paper, albeit indirectly, is the size of the connected
components of P(n, p).

Question 10.3. What is the size of the largest connected component of P(n, p)?

At the common threshold for the stars C(1, t) the components size becomes unbounded. For
larger values of p = exp(−cn) it would be interesting to compare the size of largest component to
2ne−cn, the expected number of elements in P(n, p).

As we have seen, once we pass the threshold for the existence of P , the collection of ‘profiles’ of
copies of P that occur with positive probability in P(n, p) begins to expand. We have also given
examples where this set of embeddings does not consist of a single point, even at c?(P ). It would
be interesting to identify conditions which ensure that there is a unique embedding at c?(P ), and
to give some quantitative large deviation bounds for the occurring copies of P .

Finally, let us note that determining the Ramsey threshold for P(d) exactly seems hard, much
like the deterministic question of finding R(P(d1),P(d2)). In [2] various bounds were given and
it was shown that R(P(3),P(3)) is either 7 or 8. As part of our own investigation into Ramsey
problems for posets we proved the following:

Theorem 10.4. R(P(3),P(3)) = 7

In order to prove this we created a Boolean satisfiability version of the problem. Here we have one
Boolean variable for each element of P(d). For each P(3) in P(d) we create two clauses, expressing
that at least one variable in a P(3) must be set to True and at least one to False, thereby avoiding
a monochromatic copy of P(3). For d ≤ 6 satisfying assignments for these Boolean formulae are
easily found by a standard SAT-solver like MiniSat, while for d = 7 the formula is found to be
unsatisfiable.

Added in proof. After submitting this paper, we learned that Theorem 1.1 could be derived from
an old result of Stanley. Stanley [31] showed that for any poset P , there is a bijection between the
family of antichains in P and homP (P(1)), the family of homomorphisms from P to P(1). As there
is a natural bijection between homP (P(n)) and (homP (P(1)))n, this gives an alternative proof of
Theorem 1.1.
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