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Abstract

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates 
endogenous glucocorticoids and catalyses an important step in bile acid synthesis. 
Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype 
and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic 
glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and 
activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was 
assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by 
qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted 
in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary 
steroid metabolite profiling in healthy volunteers was performed pre- and post-
dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 
metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less 
efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and 
activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone 
enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and 
these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects 
of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, 
including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids 
down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid 
clearance. In addition, AKR1D1 down-regulation alters the activation of multiple 
nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis 
gene expression profiles, which may exacerbate the adverse impact of exogenous 
glucocorticoids.
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Introduction

Glucocorticoids (GCs) are steroid hormones that are 
released in response to stress and play a crucial role in 
inflammation and in carbohydrate, lipid and protein 
metabolism. Within key metabolic target tissues, notably 
the liver, the availability of GCs to bind and activate 
the GC receptor (GR) is controlled by a series of pre-
receptor enzymes that inactivate or regenerate active 
GCs. In this regard, the role of the 11β-hydroxysteroid 
dehydrogenases (11β-HSD, type 1 and 2) and the 
5α-reductases (type 1 and 2) are well established (Morgan 
et al. 2014, Nasiri et al. 2015). We have recently shown that 
5β-reductase (AKR1D1) is also a potent regulator of GC  
availability and GR activation in human hepatocytes 
(Nikolaou et al. 2019a).

AKR1D1 is a member of the aldo-keto-reductase 
(AKR) superfamily 1 of enzymes and is the first member 
of the 1D subfamily (Onishi et  al. 1991, Faucher et  al. 
2008). The human gene consists of nine exons and six 
transcript variants that have been identified, three of 
which lead to functional protein isoforms. AKR1D1 is 
principally expressed in the liver, where levels are more 
than ten-fold higher than in any other tissue (Chen & 
Penning 2014). In addition to governing GC availability 
(as well as the availability of other steroid hormones 
including progesterone and androgens) (Kondo et  al. 
1994, Chen et al. 2011, Nikolaou et al. 2019a), we have 
shown that AKR1D1 has an important role in regulating 
lipid metabolism in human hepatocytes, largely, although 
not exclusively, through its role to limit the generation of 
bile acids (BAs) that can activate the farnesoid X receptor 
(FXR) (Nikolaou et al. 2019b).

However, important questions remain unanswered 
regarding the role of AKR1D1 in GC metabolism, 
specificially with regard to regulation of AKR1D1 
expression and activity by GCs, the capacity of AKR1D1 to 
metabolise synthetic steroids and its role in the regulation 
of established GC target genes. There is a precedent for 
GCs regulating their own pre-receptor metabolism. GCs 
are known to increase 11β-HSD1 activity and expression 
and this has been postulated as a mechanism driving local 
GC excess and fueling an adverse metabolic phenotype 
(Jamieson et  al. 1995, Dube et  al. 2015). While the 
differential feedback of BAs to regulate AKR1D1 expression 
has been previously described (Valanejad et al. 2017), to 
date, the interplay between GCs and AKR1D1 expression 
and activity has not been explored.

Our study therefore had two major aims; first, to 
examine the potential for GCs to regulate AKR1D1 

expression and activity and, secondly, to determine 
if established GC sensitive molecular targets are also 
regulated by changes in AKR1D1 and, if so, whether this is 
mediated through GR or non-GR mediated mechanisms. 

Materials and methods

Cell culture

HepG2 cells (Cat#HB-8065) and HEK293 cells 
(Cat#CRL-11268) were purchased from ATCC. Huh7 
cells were purchased from the Japanese Cancer Research 
Resources Bank (Cat#JCRB0403). All cell lines were 
cultured in Dulbecco’s minimum essential medium 
(DMEM) (Thermo Fisher Scientific), containing 4.5 g/L 
glucose and supplemented with 10% fetal bovine serum, 
1% penicillin/streptomycin and 1% non-essential amino 
acids (Thermo Fisher Scientific).

Dexamethasone (500 nM), cortisol (500 nM), 
prednisolone (500 nM), GW4064 (5 μM), GSK2033  
(100 nM), 22(S)-hydroxycholesterol (10 μM) and RU486 
(5 μM) were purchased from Sigma-Aldrich. SPA70  
(10 μM) was purchased from Axon Medchem (Groningen, 
Netherlands). For all cell treatments, HEK293, HepG2 and 
Huh7 cells were cultured in serum-free and phenol red-
free media containing 4.5g/L glucose and supplemented 
with 10% fetal bovine serum, 1% penicillin/streptomycin 
and 1% non-essential amino acids.

Transfection studies

AKR1D1 over-expression studies were performed in 12-well 
cell bind plates (Corning). The pCMV6-XL4 + AKR1D1 
(Origene Technologies, Rockville, MD, USA) construct 
was used and 0.5 μg DNA and 1 μL X-tremeGENE DNA 
transfection reagent (Roche) were diluted in 100 μL 
OPTIMEM serum-free media (Invitrogen). The mixture 
was vortexed and incubated at room temperature for  
20 min and, subsequently, 100 μL was added to each well 
and cells were incubated at 37°C for 48 h prior to treatment.

For AKR1D1 knockdown studies, cells were plated 
in 24-well cell bind plates (Corning). AKR1D1 siRNA 
molecules (HSS1101183, HSS1101184) were purchased 
from Invitrogen. 20 nmol of AKR1D1 siRNA was diluted 
in 25 μL OPTIMEM serum-free media (Invitrogen) and, in 
a separate tube, 2.5 μL Lipofectamine RNAiMAX (Invitrogen) 
was diluted in 25 μL OPTIMEM serum-free media. The 
contents of the two tubes were combined by gentle 
pipetting and incubated at room temperature for 5 min.  
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50 μL of the resulting transfection solution was added 
drop-wise and cells were incubated at 37°C for 48 h prior 
to treatment.

Luciferase reporter assay

To determine GR activation, HEK293 cells were plated 
in 24-well cell bind plates (Corning) and co-transfected 
with AKR1D1 over-expression vector (as described 
above) and GRE-reporter: a mixture of an inducible  
GRE-responsive firefly luciferase construct and a 
constitutively expressing renilla luciferase construct 
(#CCS-006L, Qiagen). Cell lysates were harvested in 
passive lysis buffer, and reporter activity was measured 
using the Luciferase Assay System (Promega) and an 
EnSpire Multimode plate reader (PerkinElmer). The data 
were presented as the percentage ratio of firefly to renilla 
luciferase activity (Fluc/Rluc).

RNA extraction and gene expression 
(quantitative PCR)

Total RNA was extracted from cells using the Tri-Reagent 
system (Sigma-Aldrich), and RNA concentrations were 
determined spectrophotometrically at OD260 on a 
Nanodrop spectrophotometer (ThermoFisher Scientific). 
RT was performed in a 20 μL volume; 1 μg of total RNA 
was incubated with 10× RT Buffer, 100 mM dNTP Mix, 
10× RT Random Primers, 50 U/μL MultiScribe Reverse 
Transcriptase and 20 U/μL RNase Inhibitor (ThermoFisher 
Scientific). The reaction was performed under the 
following conditions; 25°C for 10 min, 37°C for 120 min 
and then terminated by heating to 85°C for 5 min.

All quantitative PCR (qPCR) experiments were 
conducted using an ABI 7900HT sequence detection 
system (Perkin-Elmer Applied Biosystems). Reactions were 
performed in 6 μL volumes on 384-well plates in reaction 
buffer containing 3 μL of 2× Kapa Probe Fast qPCR Master 
Mix (Sigma-Aldrich). All probes were supplied by Thermo 
Fisher Scientific as predesigned TaqMan Gene Expression 
Assays (FAM dye-labeled). The reaction conditions were 
95°C for 3 min, then 40 cycles of 95°C for 3 s and 60°C 
for 20 s. The Ct (dCt) of each sample using the following 
calculation (where E is reaction efficiency, determined 
from a standard curve): ΔCt = E(min Ct−sample Ct) using the 
1/40 dilution from a standard curve generated from a pool 
of all cDNAs as the calibrator for all samples. The relative 
expression ratio was calculated using the following 
formula: Ratio = ΔCt(target)/ΔCt(ref) and expression values 
were normalized to 18SrRNA (Pfaffl 2001).

Protein extraction and immunoblotting

Total protein was extracted from cells using RIPA buffer 
(150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium 
deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0) (Sigma-
Aldrich) and protease inhibitor cocktail (Thermo Fisher 
Scientific). Protein concentrations were measured using 
a commercially available assay (Bio-Rad Laboratories) 
according to the manufacturer’s protocol. Primary human 
AKR1D1 (dilution 1/250; HPA057002, Atlas Antibodies 
AB, Bromma, Sweden), GILZ (sc-133215, Santa Cruz 
Biotechnology), β-tubulin (#15115, monoclonal) (Cell 
Signaling), β-actin (#3700, monoclonal) (Cell Signaling), 
CYP8B1 (#PA5-37088, polyclonal) (ThermoFisher 
Scientific) and secondary antibodies (P044801-2, 
polyclonal) from Dako (Agilent) were used at a dilution 
of 1/1000 (primary) and 1/2000 (secondary) respectively, 
unless stated otherwise. Bands were visualised with Bio Rad 
Clarity Western ECL and ChemiDocXS imager (Bio Rad). 
Western blots were quantified by densitometry analysis 
using ImageJ (https://imagej.nih.gov/ij/), normalised to 
β-tubulin to correct for variability in gel loading.

Clinical protocol

The study was approved by the South East Wales Research 
Ethics Committee, and all participants gave written 
informed consent. The study protocol was authorised 
by the Medicines and Healthcare products Regulatory 
Agency (EudraCT number: 2013-000259-42). Fourteen 
healthy male participants with no significant past 
medical history and who were on no regular prescribed 
medication were recruited into the study and investigated 
on two occasions. On their first assessment, participants 
performed a timed (8 h) urine collection starting at  
24:00 h and ending at 08:00 h the following morning. On 
their second assessment, they took dexamethasone 1 mg 
at 23:00 h, and then performed the timed urine collection 
from 24:00 to 08:00 h as before. Urine collection aliquots 
were stored at −20°C until analysis by gas chromatography-
mass spectrometry as described.

Steroid hormone measurements

For in vitro media steroid hormone treatments, quantitative 
gas chromatography-mass spectrometry (GC-MS) was 
undertaken in selected ion-monitoring analysis mode as 
described previously (Shackleton 1986). An Agilent 5973 
instrument was used in a selected ion monitoring mode and 
the following steroids were identified: cortisol, cortisone, 
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5β-tetrahydrocortisone (5β-THE), 5β-tetrahydrocortisol 
(5β-THF), 5α-tetrahydrocortisol (5α-THF) and cortisol-d4. 
Cortisol was positively identified by comparison to an 
authentic reference standard that gave a double peak 
at approximately 24.17 min, monitored ion was 605. 
Cortisone was positively identified by comparison to an 
authentic reference standard that gave a double peak at 
approximately 23.20 min, monitored ion was ion 531. 
The monitored ions for 5β-THE and 5β-THF were 578 
and 562, respectively, and were positively identified at 
approximately 18.87 min and 19.95 min, respectively. 
In selected experiments, cell media cortisone levels were 
also determined using a commercially available cortisone 
ELISA assay (<0.1% cross-reactivity with dexamethasone), 
according to the manufacturer’s protocol (Invitrogen). 
Cell media prednisolone and dexamethasone were 
measured by liquid chromatography-mass spectrometry  
(LC-MS/MS) using previously published methods 
(Owen et  al. 2005, Hawley et  al. 2018). The lower limit 
of quantitation was 5.2 nmol/L and 0.25 nmol/L for 
prednisolone and dexamethasone, respectively.

Urinary corticosteroid metabolite analysis was 
performed by GC-MS, as described previously (Shackleton 
1986, Palermo et al. 1996). Total cortisol metabolites were 
defined as the sum of cortisol, 6-OH-cortisol, cortisone, 
5β-THF, 5α-THF, 5β-THE, α-cortolone, β-cortolone, 
α-cortol and β-cortol. 5β-THF is the 5β-reduced metabolite 
generated by AKR1D1, whilst 5α-THF is generated 
through the activity of 5α-reductases (type 1 and 2). The 
5β-THF/5α-THF ratio provides a measure of the relative 
activity of AKR1D1 and 5α-reductases.

Statistics

Data are presented as mean ± s.e., unless otherwise stated. 
Normal distribution was confirmed using Shapiro–Wilk 
test. Two-tailed, paired t-tests were used to compare single 
treatments to control. For comparisons between control 
and different treatments, statistical analysis was performed 
using one-way ANOVA with Dunnett corrections. To 
compare mean differences between groups that had 
been split on multiple treatments, doses or times, two-
way ANOVA with Sidak corrections was used. Statistical 
analysis on qPCR data was performed on mean relative 
expression ratio values (Ratio = ΔCt(target)/ΔCt (Pfaffl 
2001)). Data analysis was performed using Graphpad 
Prism software (Graphpad Software Inc) and considered 
statistically significant at P < 0.05, unless otherwise stated.

Results

AKR1D1 differentially regulates endogenous and 
synthetic glucocorticoid clearance in vitro

We first explored the capacity of AKR1D1 to metabolise 
endogenous and synthetic GCs. HEK293 cells were 
transfected with either empty pCMV6-XL4 vector (EV) 
or AKR1D1 containing vector (Origene Technologies) for  
48 h. Successful over-expression was confirmed using 
qPCR and Western blotting (Supplementary Fig. 1A and B, 
see section on supplementary materials given at the end 
of this article).

Following AKR1D1 over-expression, HEK293 cells 
were treated with cortisol, prednisolone or dexamethasone 
(500 nM, 24 h) and cell media GC concentrations 
measured using mass-spectrometry. Cortisol was almost 
completely cleared within 24 h in cells over-expressing 
AKR1D1 in comparison with empty vector controls 
(Fig. 1A). In contrast, there was only partial clearance of 
prednisolone (33%) and dexamethasone (15%) (Fig. 1B 
and C). To determine the impact of these observations 
on GR activation, dual transfection experiments were 
performed. HEK293 cells were transfected with both the 
AKR1D1 expressing vector and a commercially available 
GR-element (GRE) luciferase construct. Consistent with 
the mass-spectrometry data, AKR1D1 over-expression 
decreased cortisol-mediated GR activation (EV: 100% 
vs AKR1D1: 43.1 ± 1.2%, P < 0.001). The impact on 
prednisolone-mediated GR activation was less marked, but 
remained significant (EV: 100% vs AKR1D1: 73.0 ± 4.4%, 
P < 0.05). There was no effect of AKR1D1 over-expression 
on dexamethasone-mediated GR activation (EV: 100% vs 
AKR1D1: 94.0 ± 10.8%, P = ns) (Fig. 1D).

Cortisol fails to regulate GC target genes in human 
hepatoma cells due to rapid clearance

To further demonstrate the potent ability of human 
hepatoma cell lines to clear endogenous cortisol, HepG2 
human hepatoma cells were treated with cortisol (500 nM, 
24 h). Cortisol failed to regulate hepatic gene expression 
(Fig. 2A, B and C). Subsequent GC-MS analysis of the cell 
media demonstrated enhanced clearance of cortisol with 
a parallel increase in cortisone production, as a result of 
endogenous 5αR/5βR and 11β-HSD2 activity, respectively 
(Fig. 2D). As expected, the levels of 5β-reduced metabolites 
of cortisol and cortisone, 5β-THF and 5β-THE, increased 
significantly (Fig. 2E). These data suggest that increased 
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cortisol clearance underpins the lack of effect of cortisol 
on gene expression in HepG2 cells.

Dexamethasone treatment down-regulates AKR1D1 
expression and activity in vitro and in vivo

Due to its limited clearance by AKR1D1, dexamethasone 
was used to examine the potential regulation of AKR1D1 
activity and expression by GCs. HepG2 cells were treated 
with dexamethasone (500 nM) for 24 h; successful 
activation of the GR was confirmed by elevated mRNA 
levels of the GR-regulated genes DUSP1 and GILZ, with a 
concomitant increase in GILZ protein expression (Fig. 3A  
and B). Dexamethasone decreased AKR1D1 mRNA 
and protein expression, without impacting on the 
expression of SRD5A1 and 11BHSD2 (Fig. 3C and D). 
To assess functional AKR1D1 activity, cortisone (which 
is metabolised by AKR1D1 in hepatocytes) clearance  
(200 nM, 8 h) was measured in cells that had been treated 
with dexamethasone. Paralleling the gene expression data, 
dexamethasone limited cortisone clearance in HepG2 cells, 

consistent with decreased AKR1D1 expression (Fig. 2E).  
In addition to regulating AKR1D1, dexamethasone 
increased the expression of other key genes involved in 
the BA synthetic pathway, including CYP7A1, CYP8B1 
and HSD3B7 (Fig. 3F).

GILZ mRNA expression was increased following 
treatment with dexamethasone (500 nM, 24 h) and, as 
expected, this was abolished following co-treatment 
with RU486 (5 μM, 24 h) (Supplementary Fig. 2A). In 
a similar manner, the down-regulation of AKR1D1 by 
dexamethasone (both mRNA and protein) was reversed 
by co-treatment with RU486 (Fig. 4A and B), indicative 
of a GR-dependent mechanism. RU486 treatment 
also prevented the dexamethasone-induced increased 
expression of CYP7A1 and CYP8B1 (Fig. 4C, D and 
Supplementary Fig. 2B).

Additional experiments were performed in Huh7 
human hepatoma cells. Similar patterns of gene expression 
changes were observed with decreased AKR1D1 and 
increased CYP7A1, CYP8B1 and HSD3B7 mRNA levels 
following dexamethasone treatment (500 nM, 24 h). The 
data are summarised in Table 1.

Figure 1
AKR1D1 differentially regulates endogenous and synthetic GC metabolism 
in vitro. AKR1D1 over-expression (grey bars) increases cortisol (A) and 
prednisolone clearance (B), following 24 h of treatment, compared to 
no-cell controls (white bars) or vector only transfected cells (black bars). 
AKR1D1 over-expression had a limited, although significant effect on 
dexamethasone clearance, following 24 h of treatment, compared to 
no-cell controls (white bars) or vector only transfected cells (black bars) 
(C). AKR1D1 over-expression (grey bars) significantly decreased activation 
of the glucocorticoid receptor in HEK293 cells, following cortisol and 
prednisolone treatment, but not following dexamethasone treatment (all 
500 nM, 24 h), as measured by activation of GRE-luciferase-reporter (D). 
Firefly luciferase activity was normalised to renilla luciferase. Data are 
presented as mean ± s.e. of n = 8 experiments, performed in duplicate. 
*P < 0.05, ***P < 0.001, compared to vector only transfected controls.

Figure 2
Endogenous GCs fail to regulate AKR1D1 expression in vitro. Cortisol 
treatment of HepG2 cells (500 nM, 24 h) has no effect on the expression 
of steroid metabolising, glucocorticoid receptor regulated or bile acid 
synthesis genes (A, B and C). Mass spectrometry analysis of cell culture 
media demostrates increased cortisol clearance with a parallel increase in 
cortisone formation, indicative of 11β-HSD2 activity (D). Cell culture media 
5β-tetrahydrocortisol (5β-THF) and 5β-tetrahydrocortisone (5β-THE) levels 
increased following cortisol treatment (500 nM, 24 h) (E). qPCR data were 
normalised to 18SrRNA. Data are presented as mean ± s.e. of n = 5 
experiments, performed in triplicate, *P < 0.05, compared no-cell controls.
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To determine if our in vitro observations had relevance 
in vivo, we examined urinary steroid profiles in an 
overnight timed (8 h) urine collection from 14 healthy 
male participants (age: 32.9 ± 3.1 years, BMI: 24.7 ±  
0.5 kg/m2) investigated on two occasions, one with 
and one without dexamethasone treatment (1 mg), 
administered at the start of the timed urine collection.

As expected, total cortisol metabolites decreased 
following dexamethasone treatment consistent with 
suppression of the hypothalamo-pituitary-adrenal axis 
(1898 ± 162 vs 1308 ± 135 μg/8 h, P < 0.01). While there 
was no change in 5α-THF levels, the production of the 
5β-reduced metabolite of cortisol, 5β-THF, decreased 
following dexamethasone treatment (Fig. 5A and B). 

The 5β-THF/5α-THF ratio also decreased (Fig. 5C), data 
consistent with a dexamethasone-mediated selective 
reduction in AKR1D1 activity with no impact on 
5α-reductase activity.

AKR1D1 knockdown alters glucose metabolism gene 
expression through FXR, GR, and PXR-dependent 
mechanisms

GCs have a profound effect on carbohydrate metabolism 
through upregulation of hepatic gluconeogenesis and 
glycogen synthesis (Sistare & Haynes 1985, Schneiter 
& Tappy 1997, Tounian et  al. 1997). Dexamethasone 
treatment of HepG2 cells (500 nM, 24 h) increased 
mRNA expression related to these two processes, 
namely phosphoenolpyruvate carboxykinase (PEPCK), 
pyruvate carboxylase (PC), fructose-bisphosphatase 1 
(FBP1) and glycogen synthase (GYS1) mRNA expression 
(Supplementary Fig. 2C).

Successful AKR1D1 knockdown in HepG2 cells was 
achieved using siRNA techniques (AKR1D1 siRNA variant 

Figure 3
Synthetic GCs down-regulate AKR1D1 expression and activity in vitro. 
Dexamethasone treatment of HepG2 cells (500 nM, 24 h) increases the 
mRNA and protein expression of the glucocorticoid regulated genes, 
DUSP1 and GILZ (A and B). Dexamethasone treatment decreases the 
mRNA and protein expression of AKR1D1, but it had no effect on the 
expression of the steroid-metabolising genes SRD5A1 and 11BHSD2 (C and 
D), with a concomitant decrease in cortisone clearance, following 8 h of 
cortisone treatment (200 nM) (E). Dexamethasone treatment increases 
the expression of the bile acid synthesis genes CYP7A1, CYP8B1 and 
HSD3B7 (F). Representative Western blot images are shown, and formal 
quantification was performed in n = 5 replicates. qPCR data were 
normalised to 18SrRNA. Data are presented as mean ± s.e. of n = 5–7 
experiments, performed in triplicate, *P < 0.05, **P < 0.01, ***P < 0.001, 
compared vehicle-treated controls.

Figure 4
GCs regulate AKR1D1 expression through GR activation. Dexamethasone 
treatment decreases AKR1D1 mRNA (A) and protein expression (B). 
Addition of the glucocorticoid receptor antagonist RU486 (5 μM, 24 h) in 
the dexamethasone-treated HepG2 cells normalises the expression levels 
of AKR1D1 (A and B). RU486 also normalises the dexamethasone-induced 
expression of CYP8B1 (C and D). Representative Western blot images are 
shown, and formal quantification was performed in n = 5 replicates. 
Representative Western blot images are shown, and formal quantification 
was performed in n = 5 replicates. qPCR data were normalised to 
18SrRNA. Data are presented as mean ± s.e. of n = 5 experiments, 
performed in triplicate, *P < 0.05, **P < 0.01, ***P < 0.001, compared to 
vehicle-treated controls.
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HSS1101183, Suppementary Fig. 3A and B). Mirroring the 
impact of dexamethasone treatment, and in the absence 
of steroid hormone supplementation in the cell media, 
AKR1D1 knockdown also increased the expression of 
PEPCK, PC, FBP1 and GYS1 (Fig. 6A). To confirm that 
the effect of AKR1D1 knockdown on gluconeogenic 
gene expression is not siRNA specific, additional 
experiments using a second siRNA variant (HSS1101184) 
were performed in HepG2 cells. The results revealed 
similar upregulation of PEPCK, PC and FBP1 expression, 
following AKR1D1 knockdown (Supplementary Fig. 3C 
and D). Additional AKR1D1 knockdown experiments were 
also performed in Huh7 cells, revealing similar changes 
in gene expression with increased PEPCK, PC and FBP1 
mRNA levels, following AKR1D1 knockdown. The data 
are summarised in Table 2.

AKR1D1 knockdown has been previously shown to 
result in alterations in both FXR and LXR activation, due to 
decreases in primary BA synthesis and increases in oxysterol 
accumulation, respectively (Janowski et al. 1996, Nikolaou 
et  al. 2019b). We proposed that FXR agonism and/or  
LXR antagonism would have the potential to rescue the 
phenotype in our cells. Cell treatments using the FXR agonist 
GW4064 (5μM, 24 h) normalised the expression of GYS1 to 
levels seen in scrambled-transfected cells, but failed to rescue 
the upregulation of PEPCK, PC or FBP1 expression, caused by 
AKR1D1 knockdown (Fig. 6B). Additional treatments with 
the LXRα and LXRβ antagonists 22(S)-Hydroxycholesterol 
(10 μM, 24 h) and GSK2033 (100 nM, 24 h) also failed to 
restore PEPCK, PC or FBP1 expression, suggesting that 
the observed phenotype is not driven by increased LXR 
activation (Supplementary Fig. 4A and B).

Οxysterols and cholesterol metabolites have been 
recently shown to activate the GR (Voisin et  al. 2017, 
Silvente-Poirot et al. 2018). In AKR1D1 knockdown cells, 

treatments with RU486 treatment (5 μM, 24 h) limited 
the induction of PEPCK and GYS1 levels, suggesting that 
this observation was mediated, at least in part, through 
activation of the GR. However, RU486 treatment failed to 
rescue the up-regulation of PC or FBP1 seen in AKR1D1 
knockdown cells (Fig. 6C).

In addition to LXR and GR, oxysterols are endogenous 
ligands of the Pregnane-X-Receptor (PXR) (Shenoy et al. 
2004a,b, Li et al. 2007). Treatment of AKR1D1 knockdown 
cells with the PXR antagonist SPA70 (10 μM, 24 h) limited 
the increase in gene expression of PC, FBP1 and GYS1, 

Table 1 mRNA expression analysis following 24 h 
dexamethasone treatment in Huh7 cells.

Gene Vehicle Dexamethasone P-value

AKR1D1 0.81 ± 0.04 0.66 ± 0.04b <0.001
GILZ 1.15 ± 0.12 1.25 ± 0.11a 0.037
DUSP1 1.05 ± 0.15 1.14 ± 0.17a 0.024
CYP7A1 0.92 ± 0.04 1.08 ± 0.02a 0.021
CYP8B1 0.44 ± 0.1 0.70 ± 0.12b <0.001
HSD3B7 0.56 ± 0.05 0.69 ± 0.06a 0.015
11BHSD2 0.52 ± 0.10 0.50 ± 0.11 0.613

Dexamethasone treatment (500 nM, 24 h) significantly decreases the 
expression of AKR1D1 and increases the expression of GILZ, DUSP1, 
CYP7A1, CYP8B1 and HSD3B7 in Huh7 human hepatoma cells. qPCR data 
were normalised to 18SrRNA. Data are presented as mean ± s.e. of n = 5 
experiments, performed in triplicate, aP < 0.05, bP < 0.001, compared to 
vehicle-treated controls.

Figure 5
Synthetic GCs down-regulate AKR1D1 activity in vivo. Urine 
5β-tetrahydrocortisol (5β-THF) levels decrease following over-night 
dexamethasone treatment, compared to overnight samples without 
treatment (A). There is no alteration in 5α-tetrahydrocortisol (5α-THF) 
levels (B). The 5β-THF/5α-THF ratio decreased following dexamethasone 
treatment, indicative of decreased AKR1D1 activity (C). Data are presented 
as mean ± s.e. of n = 14 participants, ***P < 0.001.
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indicative of an additional PXR activation mechanism of 
action (Fig. 6D).

Discussion

We show that although AKR1D1 represents a crucial step in 
endogenous cortisol clearance, it clears synthetic steroids 
poorly in comparison. We demonstrate that dexamethasone 
decreases expression and activity of AKR1D1 in vitro and  
in vivo (without any effect on 3α-HSD activity, as evidenced 
by the lack of change in 5α-THF levels) and, finally, we 
reveal that the actions of AKR1D1 to regulate the expression 
of genes involved in glucose metabolism are mediated 
through FXR, GR and PXR activation.

Synthetic GCs, including dexamethasone, prednisone 
and prednisolone, are frequently prescribed for a variety 
of oncological and inflammatory conditions (van Staa 
et  al. 2000, Wooldridge et  al. 2001, Amin et  al. 2014).  

Although less efficiently cleared than cortisol, we did 
observe some prednisolone clearance by AKR1D1, with 
even more limited metabolism of dexamethasone. 
Considering the crucial role of AKR1D1 to metabolise 
endogenous cortisol and cortisone, the impaired 
clearance of synthetic GCs that we have observed suggests 
an additional mechanism (over and above potency of 
GR activation), through which synthetic GCs may have 
more potent actions (both therapeutically desirable anti-
inflammatory and anti-proliferative, but also undesirable 
metabolic and musculoskeletal side effects).

The potential role of steroid hormones, including GCs 
and androgens, to regulate the expression of the A-ring 
reductases is poorly described and has been predominantly 
focused on the role of androgens, only (Berman et  al. 
1995, Torres & Ortega 2003, Li et al. 2011). In our study, 
we have demonstrated that GCs decrease hepatic AKR1D1 
expression both in vitro and in vivo and that this effect is 
mediated by activation of the GR. It is likely that these 
effects are mediated through glucocorticoid response 
elements within the promoter of AKR1D1; indeed, a study 
from Nakamoto et al. (Nakamoto et al. 2017) has recently 
shown putative GR binding sites in the AKR1D1 gene 
promoter in HepG2 cells.

Published studies have shown that over-expression of 
AKR1D1 regulates a variety of cytochrome P450 enzymes, 
including increased expression of CYP3A4 (Chaudhry 
et  al. 2013). Modulation of CYP3A4 activity has a 
profound influence of the availability of synthetic GCs; 
CYP3A4 inhibition along with concomitant synthetic 
GC administration frequently leads to the development 
of iatrogenic Cushing’s syndrome (Mahlab-Guri et  al. 
2011, Bernecker et al. 2012). Therefore, down-regulation 

Figure 6
AKR1D1 silencing drives hepatic gluconeogenic 
and glycogenic gene expression. AKR1D1 
knockdown (grey bars) increases the expression 
of PEPCK, PC, FBP1 and GYS1 (A). GW4064 
treatment (FXR agonist: 5 μM, 24 h) normalises 
the expression of GYS1 in AKR1D1 knockdown 
cells to levels seen in scrambled controls (B). 
RU486 treatment (GR antagonist: 5 μM, 24 h) 
limits the increase in the expression of PEPCK and 
GYS1 in AKR1D1 knockdown cells (C). The PXR 
antagonist, SPA70 (10 μM, 24 h), limits the 
increase in the expression of PC, FBP1 and GYS1 
seen in AKR1D1 knockdown cells (D). 
Representative Western blot images are shown, 
and formal quantification was performed in n = 5 
replicates. qPCR data were normalised to 
18SrRNA. Data are presented as mean ± s.e. of 
n = 5 experiments, performed in triplicate, 
*P < 0.05, **P < 0.01, ***P < 0.001, compared to 
vehicle-treated or scrambled-transfected controls. 
KD, AKR1D1 knockdown.

Table 2 mRNA expression analysis of gluconeogenic and 
glycogen synthesis genes in Huh7 cells, following AKR1D1 
knockdown.

Gene Scrambled control AKR1D1 knockdown P-value

AKR1D1 0.87 ± 0.11 0.09 ± 0.01a 0.006
PEPCK 0.59 ± 0.09 0.71 ± 0.08b <0.001
PC 0.74 ± 0.05 0.96 ± 0.05a 0.003
FBP1 0.18 ± 0.006 0.32 ± 0.01a 0.005
GYS1 0.78 ± 0.11 0.87 ± 0.12 0.22

AKR1D1 knockdown significantly increases the expression of PEPCK, PC 
and FBP1 in Huh7 human hepatoma cells. qPCR data were normalised to 
18SrRNA. Data are presented as mean ± s.e. of n = 4 experiments, 
performed in duplicate, aP < 0.01, bP < 0.001, compared to scrambled-
transfected controls.
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of AKR1D1 by GCs might lead to decreased CYP3A4 
and further exacerbate the adverse effects of prescribed 
steroids through both CYP3A4 and AKR1D1 dependent 
mechanisms.

AKR1D1 is down-regulated in patients with type 2 
diabetes and we have recently shown a similar decrease in 
expression with advancing severity of non-alcoholic fatty 
liver disease (NAFLD) (Valanejad et al. 2018, Nikolaou et al. 
2019b). In this context, AKR1D1 knockdown increased 
the expression of key enzymes involved in lipogenesis 
as well as increasing functional de novo lipogenesis, as 
measured by deuterated water incorporation into fatty 
acids (Nikolaou et  al. 2019b). The data from our study 
now provide additional evidence of the adverse impact of 
AKR1D1 down-regulation, here to drive gluconeogenesis, 
with the potential to fuel hepatic glucose output. The 
down-regulation of AKR1D1 by synthetic steroids may 
therefore be an important contributing factor to the 
adverse metabolic features associated with their use.

Oxysterols, the oxidised derivatives of cholesterol, 
are predominantly, although not exclusively, produced 
in the liver through activity of the cytochrome P450 
(CYP) enzyme family (Guillemot-Legris et al. 2016), and 
they serve as potent ligands for many nuclear receptors 
including the LXRs, GR, PXR and the retinoic acid 
receptor-related orphan receptors (RORs) (Ma & Nelson 
2019). In this regard, there is compelling evidence on the 
role of oxysterols as important mediators of metabolic 
syndrome (Tremblay-Franco et  al. 2015, Guillemot-
Legris et al. 2016, Mutemberezi et al. 2016). Indeed, some 
oxysterols are now used as biomarkers for monitoring 
a variety of pathologies, including atherosclerosis, BA 
diarrhea and Alzheimer’s disease (Eusufzai et  al. 1993, 
Wang et  al. 2016, Zmysłowski & Szterk 2019). In our 
study, we were not able to directly measure cell media 
oxysterol levels; however, we have previously shown 
that AKR1D1 knockdown results in decreased primary BA 
formation (Nikolaou et al. 2019b) potentially leading to 
increased accumulation of 7α-hydroxycholestenone and 
7α,12α-dihydroxycholestenone levels (oxysterols that are 
AKR1D1 substrates) in the cell media.

AKR1D1 has a key role in BA synthesis and drives 
the formation of cholic acid and chenodeoxycholic acid. 
Endorcing our observations, dexamethasone has been 
shown to increase the expression of CYP7A1 and CYP8B1 
in both human and rat hepatocytes (Princen et al. 1989, 
Ellis et al. 1998, Mörk et al. 2016). In rodent models, data 
have been conflicting; in rats and mice, treatment with 
dexamethasone and prednisolone, respectively, resulted 
in decreased BA synthesis, as measured by decreased 

Cyp7a1 and Cyp8b1 expression and decreased faecal BA 
excretion. However, there was enhanced enterohepatic 
cycling of BAs with elevated plasma BA levels and biliary 
BA secretion (Out et al. 2014, Xiao et al. 2016). In contrast, 
another study has demonstrated that dexamethasone 
exposure to neonatal rats increased the expression of genes 
involved in the synthesis and enterohepatic cycling of 
BAs, including Cyp7a1, Cyp8b1 and sodium taurocholate 
co-transporting polypeptide (Ntcp) (Liu et al. 2008).

The role of GCs on hepatic gluconeogenesis and 
glycogen synthesis has been extensively investigated. 
GCs increase the transcription of the gluconeogenic 
genes PEPCK, PC, FBP1 and GYS1 and their action is 
predominantly conveyed through activation of the 
GR (Stalmans & Laloux 1979, Kuo et  al. 2015). In our 
study, AKR1D1 knockdown mimicked the cellular 
phenotype of GC (dexamethasone) treatment. Although 
we have previously demonstrated the ability of AKR1D1 
knockdown to increase hepatic intracellular glycogen 
storage (Nikolaou et  al. 2019b), this is our first effort 
to elucidate the mechanistic insight of the observed 
phenotype. Plausible hypotheses have been that this 
arises as a result of either impaired FXR activation, due to 
reduced primary BA synthesis, or increased accumulation 
of oxysterols, which are able to bind to and activate the 
GR (Voisin et  al. 2017, Silvente-Poirot et  al. 2018). In 
AKR1D1 knockdown cells, FXR agonism normalised GYS1 
expression only; however, we were able to partially restore 
the gene expression profiles through the use of the GR 
antagonist RU486, suggesting that some of the observed 
changes are also driven by GR activation. Nevertheless, 
RU486 treatment did not correct all the changes that  
were observed.

Recent studies have implicated PXR in the regulation 
of glucose homeostasis. In vitro, data have been conflicting; 
in Huh7 cells, PXR activation using the PXR agonist 
rifampicin has been shown to repress gluconeogenic 
gene transcription (Kodama et al. 2007) while, in another 
study using HepG2 cells, rifampicin induced PEPCK 
expression (Gotoh & Negishi 2014). The latter findings 
are in agreement with clinical studies, where rifampicin 
increases blood glucose levels in humans (Rysä et  al. 
2013, Hakkola et al. 2016). Consistent with this, our data 
revealed that the gene expression phenotype associated 
with AKR1D1 knockdown was partially attributable to 
PXR activation.

In conclusion, we have shown that AKR1D1 poorly 
metabolises synthetic GCs and that synthetic GCs decrease 
AKR1D1 expression and activity in the liver, potentially 
fueling the adverse metabolic phenotype associated with 
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their use. In vitro, AKR1D1 down-regulation mimics the 
action of GCs in driving hepatic gluconeogenesis and 
glycogen storage. As such, this represents an additional 
novel mechanism by which glucocorticoids indirectly 
regulate glucose metabolism highlighting, in total, the 
complex role of AKR1D1 to govern the activation of 
multiple nuclear hormone receptors, with significant 
implications for the regulation of metabolic phenotype 
within the liver.
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