

University of Birmingham

Decomposition of arrow type positive semidefinite
matrices with application to topology optimization
Kocvara, Michal

DOI:
10.1007/s10107-020-01526-w

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Kocvara, M 2021, 'Decomposition of arrow type positive semidefinite matrices with application to topology
optimization', Mathematical Programming, vol. 190, pp. 105-134. https://doi.org/10.1007/s10107-020-01526-w

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1007/s10107-020-01526-w
https://doi.org/10.1007/s10107-020-01526-w
https://birmingham.elsevierpure.com/en/publications/2ac81911-3ea3-4390-9867-522675591aee

Mathematical Programming
https://doi.org/10.1007/s10107-020-01526-w

FULL LENGTH PAPER

Series A

Decomposition of arrow type positive semidefinite matrices
with application to topology optimization

Michal Kočvara1,2

Received: 23 April 2019 / Accepted: 12 May 2020
© The Author(s) 2020

Abstract
Decomposition of large matrix inequalities for matrices with chordal sparsity graph
has been recently used by Kojima et al. (Math Program 129(1):33–68, 2011) to
reduce problem size of large scale semidefinite optimization (SDO) problems and
thus increase efficiency of standard SDO software. A by-product of such a decompo-
sition is the introduction of new dense small-size matrix variables. We will show that
for arrow typematrices satisfying suitable assumptions, the additionalmatrix variables
have rank one and can thus be replaced by vector variables of the same dimensions.
This leads to significant improvement in efficiency of standard SDO software. We
will apply this idea to the problem of topology optimization formulated as a large
scale linear semidefinite optimization problem. Numerical examples will demonstrate
tremendous speed-up in the solution of the decomposed problems, as compared to
the original large scale problem. In our numerical example the decomposed problems
exhibit linear growth in complexity, compared to the more than cubic growth in the
original problem formulation. We will also give a connection of our approach to the
standard theory of domain decomposition and show that the additional vector variables
are outcomes of the corresponding discrete Steklov–Poincaré operators.

Keywords Semidefinite optimization · Positive semidefinite matrices · Chordal
graphs · Domain decomposition · Topology optimization

Mathematics Subject Classification 90C22 · 74P05 · 65N55 · 05C69

This work has been supported by European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement 813211 (POEMA).

B Michal Kočvara
m.kocvara@bham.ac.uk

1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

2 Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod
vodárenskou věží 4, 18208 Praha 8, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01526-w&domain=pdf
http://orcid.org/0000-0003-4414-0083

M. Kočvara

1 Introduction

General purpose algorithms and software for semidefinite optimization (SDO) are
dominated by interior point and barrier type methods. Any such software exhibits two
bottlenecks regarding computational complexity, and thus CPU time, and memory
requirements. The first one is the evaluation of the system matrix (Schur comple-
ment matrix or Hessian of augmented Lagrangian) in every step of the underlying
Newton method. The second one is then the solution of a linear system with this
matrix. For problems with large matrix inequalities, it is often the first bottleneck that
dominates the CPU time and that prevents the user from solving large scale prob-
lems.

To circumvent this obstacle, the technique of decomposition of a large matrix
inequality into several smaller ones proved to be efficient, at least for certain classes
of problems. Decomposition of positive semidefinite matrices with a certain spar-
sity pattern was first investigated in Agler et al. [1] and, independently, by Griewank
and Toint [4]. An extensive study has been recently published by Vandenberghe and
Andersen [13]. We will call this technique chordal decomposition. It was first used in
semidefinite optimization byKojima and his co-workers; see [3,10] and,more recently,
[8]. The group also developed a preprocessing software for semidefinite optimization
named SparseCoLO [2] that performs the decomposition of matrix constraints auto-
matically.

The goal of this paper is two-fold. Firstly, we introduce a new decomposition
of arrow type positive semidefinite matrices called arrow decomposition. Unlike the
chordal decomposition that generates additional dense matrix variables, arrow decom-
position only requires additional vector variables of the same size, leading to significant
reduction of number of variables in the decomposed problem. The second goal is to
apply both decomposition techniques to the topology optimization problem. This prob-
lem arises from finite element discretization of a partial differential equation. We will
show that techniques known from domain decomposition can be used to define the
matrix decomposition. In particular, we will be able to control the number and size
of the decomposed matrix inequalities. Even when using the chordal decomposition,
this will allow us to gain tremendous speed-up when compared to approaches based
on automatic chordal completion as in [2]. We will also give a connection of the arrow
decomposition with the theory of domain decomposition and show that the additional
vector variables are outcomes of the corresponding discrete Steklov-Poincaré opera-
tors.

To solve all semidefinite optimization problems, we will use the state of the art
solverMOSEK [9]. Numerical examples will demonstrate tremendous speed-up in the
solution of the decomposed problems, as compared to the original large scale problem.
Moreover, in our numerical examples the arrow decomposition exhibits linear growth
in complexity, compared to the higher than cubic growth when solving the original
problem formulation.

Notation Let Sn be the space of n × n symmetric matrices, A ∈ S
n , and I ⊂

{1, . . . , n} with s = |I |. We denote

123

Decomposition of arrow type positive semidefinite matrices…

– by (A)i, j the (i, j)th element of A;
– by (A)I the restriction of A to S

s , i.e., the s × s submatrix of A with row and
column indices from I ;

– by Om,n the m × n zero matrix; when the dimensions are clear from the context,
we simply use O .

A matrix is called dense if all its elements are non-zeros. Otherwise, the matrix is
called sparse. A matrix-valued function A(x) is called dense if there exists x̄ such that
A(x̄) is dense.

Let A ∈ S
n . The undirected graph G(N , E) with N = {1, . . . , n} is called sparsity

graph of A (or just graph of A) when (i, j) ∈ E if and only if (A)i, j �= 0.
For an index set I ⊂ {1, . . . , n} we define

S
n(I) := {Y ∈ S

n | (Y)i, j = 0 if (i, j) /∈ I × I }
S
n+(I) := {Y ∈ S

n(I) | Y � 0}.
Furthermore, let G(N , E) be an undirected graph with N = {1, . . . , n} and edge set
E ⊆ N × N . We define

S
n(G) := {Y ∈ S

n | (Y)i j = 0 if (i, j) /∈ E ∪ {(i, i)}}
and analogously S

n+(G).
LetGs(Ns, Es) be an induced subgraph ofG(N , E). Notice the difference between

S
n(Gs) and S

n(Ns). If A ∈ S
n(Ns) then its restriction (A)Ns is a dense matrix. This

is not true for A ∈ S
n(Gs), the sparsity pattern of which is given by the set of edges

Es . In particular, Sn(Gs) = S
n(Ns) if and only if Gs is a maximal clique.

Finally, for functions from R
d → R we will use bold italics (such as u or u(ξ)),

while for vectors resulting from finite element discretization of these functions, we
will use the same symbol but in italics (e.g. u ∈ R

n).

2 Decomposition of positive semidefinite matrices

2.1 Matrices with chordal sparsity graphs

We first recall the well-studied case of matrices with chordal sparsity graph. The
following theorem was proved independently by Grone et al. [5], Griewank and Toint
[4] and by Agler et al. [1]. A new, shorter proof can be found in [7].

Theorem 1 Let G(N , E) be an undirected graph with maximal cliques C1, . . . ,Cp.
The following two statements are equivalent:

(i) G(N , E) is chordal.
(ii) For any A ∈ S

n(G), A � 0, there are matrices Yk ∈ S
n+(Ck), k = 1, . . . , p, such

that A = Y1 + Y2 + · · · + Yp.

Notice that this decomposition is not unique. However, Kakimura [7] has shown that
there exist matrices Y ∗

k minimizing
∑p

k=1 rank Yk subject to
∑p

k=1 Yk = A and Yk ∈
S
n+(Ck) (k = 1, . . . , p) and that

∑p
k=1 rank Y

∗
k = rank A.

123

M. Kočvara

2.2 Matrices embedded in those with a chordal sparsity graph

Let A ∈ S
n , n ≥ 3, with a sparsity graph G = (N , E). Let the set of nodes N =

{1, 2, . . . , n} be partitioned into p ≥ 2 overlapping sets

N = I1 ∪ I2 ∪ · · · ∪ Ip.

Let Ik,� denote the intersection of the kth and �th set, i.e.,

Ik,� := Ik ∩ I�, (k, �) ∈ Θp

with

Θp := {(i, j) | i = 1, . . . , p − 1; j = 2, . . . , p; i < j}.

Assumption 1 Let 1 ≤ k ≤ p. There exists at least one index � with 1 ≤ � ≤ p,
� �= k, such that Ik ∩ I� �= ∅.
Assumption 2 Ik ∪ I� �= Ik for all 1 ≤ k, � ≤ p, k �= �, i.e., no I� is a subset of any
Ik .

Assumption 3 The intersections are “sparse” in the sense that for each k ∈ {1, . . . , p}
there are at most pk indices �i such that Ik ∩ I�i �= ∅, i = 1, . . . , pk , where 1 ≤ pk �
p.

In a typical situation only Ik,k+1, k = 1, . . . , p − 1, are not empty (corresponding
to a block diagonal matrix with overlapping blocks) or Ik has a non-empty intersection
with up to eight other sets (see Sect. 4).

Denote the induced subgraphs of G(N , E) corresponding to Ik by Gk(Ik, Ek),
k = 1, . . . , p. These subgraphs are not necessarily cliques.

Lemma 1 Let A be defined as above and Assumptions 1–3 hold. Then there exist
matrices Qk ∈ S

n(Gk) such that

A =
p∑

k=1

Qk .

The proof of the above lemma is obvious, as the principal submatrices associated with
the subgraphsGk(Ik, Ek) cover all the nonzeros in A. However, although matrices Qk

are obviously non-unique, in our application in Sect. 3 they will be specified a priori
and will be, in fact, used for the construction of the matrix A.

For all k = 1, . . . , p, let Ĝk(Ik, Êk) denote a completion of Gk(Ik, Ek), i.e., a
clique inG(N , E). According to Assumption 2, Ĝk(Ik, Êk) are evenmaximal cliques.
Clearly, Qk ∈ S

n(Ĝk).

Assumption 4 The union Ĝ(N , Ê) :=⋃p
k=1 Ĝk(Ik, Êk) is a chordal graph.

123

Decomposition of arrow type positive semidefinite matrices…

The graph Ĝ(N , Ê) ⊃ G(N , E) is called a chordal extension of G(N , E); see,
e.g., [13, Section 8.3].

Notice that the rather restrictiveAssumption 4 is satisfiedwhen A is a block diagonal
matrix with overlapping blocks. It may not be satisfied in the application in Sect. 4;
we will see, however, that it will not be needed in this application.

Theorem 2 Let A be defined as above and Assumptions 1–4 hold. The following two
statements are equivalent:

(i) A � 0.
(ii) There exist matrices Sk,� ∈ S

n(Ik,�), (k, �) ∈ Θp, such that

A =
p∑

k=1

Q̃k with Q̃k = Qk −
∑

�:�<k

S�,k +
∑

�:�>k

Sk,�

and

Q̃k � 0 k = 1, . . . , p.

If Ik,� = ∅ or is not defined then Sk,� is a zero matrix.

Proof Using the chordal extension Ĝ(N , Ê) of G(N , E), we embed the matrix A
into a set of matrices with chordal sparsity graphs with maximal cliques Ĝk(Ik, Êk),
k = 1, . . . , p. Then we can apply Theorem 1. Hence there exist matrices Yk ∈ S

n+(Ik),
k = 1, . . . , p, such that A = Y1 + · · · + Yp. Now, Yk must be equal to Qk for the

“internal” indices of Ik , i.e., for all (i, j) ∈ (
Ik\
(⋃

�:�>k(Ik,�) ∪⋃�:�<k(I�,k)
))2.

Therefore the unknown elements of Yk reduce to the overlaps Ik,�.
Having Qk and Yk , k = 1, . . . , p, we will now define the matrices the Sk,� as

follows. Firstly, for k = 1 we select any solution
{
S1,�
}
I1,� �=∅ of the equation

Y1 = Q1 +
∑

�:�>1
I1,� �=∅

S1,�.

Notice that many elements of matrices S1,� (I1,� �=∅) are uniquely defined by this
equation. Only elements with indices from nonempty intersections I1,� ∩ I1,k are not
unique, as they appear in more than one matrix S•,• in the above equation.

Now, for 1 < k < p, we solve the equation

Yk = Qk −
∑

�:�<k
I�,k �=∅

S�,k +
∑

�:�>k
Ik,� �=∅

Sk,�.

All matrices S�,k, � < k,were defined in steps 1, . . . , k−1, hence we are in the same
situation as above and select any solution

{
Sk,�
}
�>k,Ik,� �=∅ of the above equation. Any

selection of the non-unique elements of S•,• will be consistent with the last equation

123

M. Kočvara

(a) (b) (c) (d)

Fig. 1 Decomposition of a five-diagonalmatrix bymaximal cliques, according toTheorem1 (a), the sparsity
graph of this matrix (b), decomposition to two blocks according to Theorem 2 (c), and the corresponding
chordal extension of the graph with two maximal cliques (d)

Yp = Qp −
∑

�:�<p
I�,p �=∅

S�,p

because we know that A = ∑p
k=1 Yk = ∑p

k=1 Qk . Therefore A = ∑p
k=1 Q̃k and the

assertion follows. ��
Theorem 2 allows us to define the decomposition at our will, within the limits of

the assumptions; even for matrices with chordal sparsity graph the decomposition
does not have to be driven by the maximal cliques. This is illustrated in the following
example.

Example 1 Consider a 7×7 five-diagonal matrix as schematically depicted in Fig. 1a;
here crosses represent nonzero real numbers. The sparsity graph of this matrix is
shown in Fig. 1b. This graph is chordal with six maximal cliques corresponding to the
six triangles. Following Theorem 1, the chordal decomposition will use six principal
submatrices shown in Fig. 1a. However, using Theorem 2 we can choose to decom-
pose the matrix to only two principal submatrices, as shown in Fig. 1c. In this case,
I1 = {1, 2, 3, 4, 5}, I2 = {4, 5, 6, 7, 8} and I1,2 = {4, 5}. The corresponding chordal
extension with two maximal cliques is shown in Fig. 1d. ��

2.3 Arrow typematrices

Let us now consider a particular type of sparse matrices, the arrow type matrices. Let
again A ∈ S

n , n ≥ 3, and let Ik , Ik,� and Gk(Ik, Ek), k = 1, . . . , p, be defined as in
the previous section.

Assume again that A is a sum of matrices associated with Gk :

A =
p∑

k=1

Ak, Ak ∈ S
n(Gk).

Further, let B ∈ R
n×m , B = ∑p

k=1 Bk with Bk , k = 1, . . . , p, being rectangular
matrices such that

(Bk)i, j = 0 for i /∈ Ik

123

Decomposition of arrow type positive semidefinite matrices…

and assume that

m < min
k,�=1,...,p

k<�

|Ik,�|. (1)

We also define

Îk = Ik ∪ {n + 1, . . . , n + m}, k = 1, . . . , p

and

Îk,� = Ik,� ∪ {n + 1, . . . , n + m}, (k, l) ∈ Θp. (2)

Finally, letC ∈ S
m be positive definite.We define the following arrow type matrix:

M =
p∑

k=1

Mk +
[
0 0
0 C

]

where Mk =
[
Ak Bk

B�
k 0

]

, k = 1 . . . , p. (3)

According to the definition of Ak and Bk , we have that

(Mk)i, j = 0 for (i, j) /∈ Îk × Îk, k = 1, . . . , p. (4)

The simplest example of an arrow type matrix is a block diagonal matrix with
overlapping blocks and with additional rows and columns corresponding to matrices
B and C . The next example presents another typical situation.

Example 2 Consider a 7 × 7 matrix as shown in Fig. 2a. The sparsity graph of this
matrix is shown in Fig. 2b. This graph is not chordal: the cycle 1–2–3–4–5–6–1 does
not have a chord. Let I1 = {1, 2, 3, 4}, I2 = {3, 4, 5, 6}, I3 = {1, 2, 5, 6} and thus
Îk = Ik ∪ {7}. Notice that, due to (1), I3 must contain at least two nodes from I1. This
decomposition satisfies Assumptions 1–4. In particular, if we extend all subgraphs
associated with the decomposition to cliques, we will obtain a dense matrix with a
complete, i.e., chordal sparsity graph; hence also Assumption 4 is satisfied. ��

(a)

7

2
3

1 6

5
4

(b) (c) (d)

Fig. 2 An example of an arrow type matrix (a), its sparsity graph (b), and an example of its decomposition
I1, I2, I3 satisfying Assumptions 1–4 (c) and the associated decomposition Î1, Î2, Î3 (d)

123

M. Kočvara

Notice that the structure of the overlapping blocks can be more complicated and
that, in general, A (the arrow “shaft”) does not have to be a band matrix. Such matrices
arise in the application introduced later in Sect. 3; see Figs. 6 and 7. In this application,
we will havem = 1, so that B will be an n-vector andC ∈ R. However, in this section
we consider the more general situation which may be useful in other applications.

Before going on, we need the following auxiliary result. It tells us that we do
not need to consider all intersections of the extended sets Îk but only those that are
extensions of Ik,�, i.e., only Îk,� as defined in (2).

Lemma 2 Let G(NG , EG) be a chordal graph with maximal cliques Gk(Ik, Ek), k =
1, . . . , p. Let H(NH , EH) be a complete graph, disjoint with G. Define

Ñ = NG ∪ NH , Ẽ = EG ∪ EH ∪ EGH ,

where EGH contains all edges with one vertex in NG and one vertex in NH . Define
the extension of G as G̃(Ñ , Ẽ). Similarly, define G̃k(Ĩk, Ẽk) with

Ĩk = Ik ∪ NH , Ẽk = Ek ∪ EH ∪ EkH , k = 1, . . . , p,

where EkH contains all edges with one vertex in Ik and one vertex in NH . Then
G̃(Ñ , Ẽ) is a chordal graph with maximal cliques G̃k(Ĩk, Ẽk), k = 1, . . . , p.

Proof Obviously, G̃k(Ĩk, Ẽk) are cliques, as all vertices in Ĩk are adjacent, by assump-
tion (Gk is a clique and H is complete) and by construction. Further, by construction,
every maximal clique Gk(Ik, Ek) is included in some clique in G̃(Ñ , Ẽ). Now sup-
pose that K (NK , EK) is a maximal clique in G̃; then NH ⊂ NK . We want to show
that K\H is a maximal clique in G. Assume, by contradiction, that it is not. Then
there is a vertex v ∈ G such that a graph with vertices v ∪ (NK \NH) is a clique in G.
Hence a graph with vertices NK ∪ v is a clique in G̃ which contradicts maximality of
K . Finally, G̃ is chordal, as any newly created cycle with vertices in NH contains a
chord in EGH . ��

We can now adapt Theorem 2 to the arrow type structure.

Corollary 1 Let Assumptions 1–4 hold. Let M be defined as in (3). The following two
statements are equivalent:

(i) M � 0.
(ii) There exist matrices Sk,� ∈ S

n(Îk,�), (k, �) ∈ Θp, such that

M =
p∑

k=1

M̃k with M̃k = Mk −
∑

�:�<k

S�,k +
∑

�:�>k

Sk,�

and

M̃k � 0 k = 1, . . . , p.

If Ik,� = ∅ or is not defined then Sk,� is a zero matrix.

123

Decomposition of arrow type positive semidefinite matrices…

Proof Let H(NH , EH) be a sparsity graph of the matrix C ; this is a complete graph.
Recall that Ĝ(N , Ê) is the chordal extension of G(N , E), the sparsity graph of the
matrix A. The maximal cliques of Ĝ are Ĝk(Ik, Êk). The matrix B is dense and
so all vertices from NH are adjacent to all vertices in N . Then, by Lemma 2, the
chordal extension of the sparsity graph of M has maximal cliques Ĝk(Îk, Êk). The
rest is a direct application of Theorem 2 with Qk = Mk for k = 1, . . . , p − 1, and

Qp =
[
Ap Bp

B�
p C

]

. ��

Under additional assumptions, but leaving out Assumption 4, we can strengthen
the above corollary as follows.

Theorem 3 Let Assumptions 1–3 hold. Assume that Ak � 0, k = 1, . . . , p, A � 0
and C � 0. Let M be defined as in (3). The following two statements are equivalent:

(i) M � 0.
(ii) There exist matrices Dk,� ∈ R

n×m such that (Dk,�)i, j = 0 for (i, j) /∈ Ik,� ×
{1, . . .m}, (k, �) ∈ Θp, and matrices Ck ∈ S

m, k = 1, . . . , p, such that

M =
p∑

k=1

M̃k , with M̃k = Mk −
∑

�:�<k

[
0 D�,k

D�
�,k 0

]

+
∑

�:�>k

[
0 Dk,�

D�
k,� 0

]

+
[
0 0
0 Ck

]

and

M̃ � 0, k = 1, . . . , p.

If Ik,� = ∅ or is not defined then Dk,� is a zero matrix.

Proof Wewill prove the theorem by constructingmatrices Dk,k+1 andCk . By assump-
tion, A is positive definite, so that we can define

X = A−1B, i.e.,
p∑

k=1

Ak X =
p∑

k=1

Bk . (5)

Then

(Ak X)i, j = (Bk)i, j for i ∈ Ik\
(
⋃

�:�>k

(Ik,�) ∪
⋃

�:�<k

(I�,k)

)

, j = 1, . . . , p. (6)

We define Dk,k+1 and Ck as follows. For k = 1, we solve the equation

A1X − B1 =
∑

�:�>1
I1,� �=∅

D1,�.

123

M. Kočvara

As in the proof of Theorem 2, some elements of thus defined D1,� may not be unique;
in this case, we just select a solution. Then, for any 1 < k < p, we solve the equation

Ak X − Bk = −
∑

�:�<k
I�,k �=∅

D�,k +
∑

�:�>k
Ik,� �=∅

Dk,�

to define Dk,�, � > k, analogously to Theorem 2. Any selection of the non-unique
elements of D•,• will be consistent with the last equation

ApX − Bp = −
∑

�:�<p
I�,p �=∅

D�,p

because of (5). From (4) and (6) we see that Dk,� is only non-zero on Ik,�, (k, �) ∈ Θp,
as required.

Define further

Ĉk = X�Ak X , k = 1, . . . , p,

Ck = Ĉk, k = 1, . . . , p − 1 and Cp = C −
p−1∑

k=1

Ck .

Now the matrices defined for k = 1, . . . , p by

M̂k = Mk −
∑

�:�<k
I�,k �=∅

[
0 D�,k

D�
�,k 0

]

+
∑

�:�>k
Ik,� �=∅

[
0 Dk,�

D�
k,� 0

]

+
[
0 0
0 Ĉk

]

=
[

Ak Ak X
X�Ak X�Ak X

]

are clearly positive semidefinite with (at least) m zero eigenvalues. We set M̃k = M̂k ,

k = 1, . . . , p−1, and M̃p = Mp−∑ �:�<p
I�,p �=∅

[
0 D�,p

D�
�,p 0

]

+
[
0 0
0 Cp

]

. By construction,

M =∑p
k=1 M̃k .

It remains to show that M̃p =
[

Ap ApX

X�Ap C −∑p−1
k=1 Ck

]

� 0 whenever M � 0.

As Ap � 0 by assumption, positive semidefiniteness of M̃p amounts to

C −
p−1∑

k=1

Ck − X�Ap A
−1
p ApX = C −

p∑

k=1

X�Ak X � 0

which, by (5), is the same as

C − B�X � 0.

123

Decomposition of arrow type positive semidefinite matrices…

By the Schur complement theorem, the last inequality is equivalent to M � 0. This
completes the proof. ��

We will call the decomposition of arrow type matrices using Corollary 1 chordal
decomposition and the one using Theorem 3 arrow decomposition.

Complexity remarks Let Assumptions 1–4 hold. Let r be the number of non-empty
sets Ik,�, (k, �) ∈ Θp. Comparing Corollary 1 with Theorem 3 we see that both
provide us with a replacement of a “large” matrix inequality M � 0 to a number
of smaller ones M̃k � 0, k = 1, . . . , p. However, while in Corollary 1 we have to
introduce r additional matrix variables of sizes | Îk,�| × | Îk,�|, in Theorem 3 we only
have r additional matrix variables of sizes |Ik,�| × m and p matrix variables of size
m × m. Recall that m < mink,�=1,...,p

k<�

|Ik,�| and, in our application below, m = 1,

so the additional variables in Theorem 3 are vectors instead of matrices of the same
dimension in Corollary 1, offering thus significant reduction in the dimension of the
additional variables.

The example below shows that the arrow decomposition does not only lead to a
problem of smaller dimension, it also allows us to use decompositions that do not
satisfy Assumption 4. In particular, the arrow decompositions can be sparser, with
smaller overlaps and hence leading to sparser and smaller SDO problem.

Example 3 Consider a 13 × 13 matrix as shown in Fig. 3a. The sparsity graph of this
matrix is shown in Fig. 3b, where the central node corresponds to the last index in the
matrix. Let us compare the arrow decomposition with the chordal decomposition.

Arrow
decomposition

As in Example 2, we decompose the 12 × 12 leading princi-
pal submatrix into six 4 × 4 principal submatrices, as shown in
Fig. 3c; here I A1 = {1, 2, 3, 4}, I A2 = {3, 4, 5, 6}, I A3 = {5, 6, 7, 8},
I A4 = {7, 8, 9, 10}, I A5 = {9, 10, 11, 12}, I A6 = {1, 2, 11, 12}. Hence,
with Î Ak = I Ak ∪{13}, k = 1, . . . , 6,we get six intersections Î Ak,�, all of
dimension 3. This decomposition satisfies Assumptions 1–3 but not
Assumption 4. Indeed, if we extend the subgraphs associated with
the decomposition to cliques, we obtain the graph shown in Fig. 3d.
This graph is, however, not chordal: for instance, the cycle 1–4–6–7–
9–11–1 does not have a chord. Therefore, we cannot apply neither
of the theorems based on chordal decomposition (Theorems 1, 2,
Corollary 1); however, we can apply Theorem 3 above. As a result,
we get six additional vector variables of dimension 3 corresponding
to Î Ak,�.

Chordal
decomposition

Chordal decomposition must satisfy Assumption 4: the closest one
to the above is I C1 = {1, 2, 3, 4, 12}, I C2 = {3, 4, 5, 6, 12}, I C3 =
{5, 6, 7, 8, 12}, I C4 = {7, 8, 9, 10, 12}, I C5 = {9, 10, 11, 12} with
Î Ck = I Ck ∪ {13}, k = 1, . . . , 5, and thus with four intersections
Î C1,2 = {3, 4, 12, 13}, Î C2,3 = {5, 6, 12, 13}, Î C3,4 = {7, 8, 12, 13},
Î C4,5 = {9, 10, 12, 13}; see Fig. 3e for the decomposition of the

123

M. Kočvara

(a) (b) (c)

7

2

12

1

(d)

(e)

7

2

12

1

(f) (g)

Fig. 3 An example of an arrow type matrix (a) its sparsity graph (b), its arrow decomposition satisfying
Assumptions 1–3 (c) and the corresponding graph extension (d), its chordal decomposition (e), the corre-
sponding extension of its sparsity graph to a chordal graph (f) and, finally, the completion of the matrix
corresponding the chordal graph (g)

leading principal submatrix, Fig. 3f for the corresponding extended
chordal graph and Fig. 3g for thematrix associatedwith the extended
graph. In this case,we needfive additionalmatrix variables of dimen-
sion 4 × 4. ��

Two natural questions arise:

1. Are the additional assumptions of Theorem 3 too restrictive? Are there any appli-
cations satisfying them?

2. Is it worth reducing the dimension of the additional variables? Will it bring any
significant savings of CPU time when solving the decomposed problem?

Both questionswill be answered in the rest of the paper using a problem from structural
optimization.

3 Application: topology optimization problem, semidefinite
formulation

Consider an elastic body occupying a d-dimensional bounded domain � ⊂ R
d with a

Lipschitz boundary ∂�, where d ∈ {2, 3}. By u(ξ) ∈ R
d we denote the displacement

vector at a point ξ , and by

ei j (u(ξ)) = 1

2

(
∂ui (ξ)

∂ξ j
+ ∂u j (ξ)

∂ξi

)

, i, j = 1, . . . , d

123

Decomposition of arrow type positive semidefinite matrices…

the (small-)strain tensor. We assume that our system is governed by linear Hooke’s
law, i.e., the stress is a linear function of the strain

σ i j (ξ) = Ei jk�(ξ)ek�(u(ξ)) (in tensor notation),

where E is the elastic (plane-stress for d = 2) stiffness tensor.
Assume that the boundary of� is partitioned as ∂� = �u∪� f ,�u∩� f = ∅ and that

an external load function f ∈ [L2(� f)]d is given. Define V = {u ∈ [H1(�)]d | u =
0 on �u} ⊃ [H1(�)]d . The weak form of the linear elasticity problem reads as:

Find u ∈ V, such that
∫

�

a(x; u, v) =
∫

� f

f (ξ) · v(ξ) ds, ∀v ∈ V, (7)

where

a(x; u, v) =
∫

�

〈x(ξ)E(ξ)e(u(ξ)), e(v(ξ))〉 dξ. (8)

In the basic topology optimization problem, the design variable is the multiplier x ∈
L∞(�) of the elastic stiffness tensor E which is a function of the space variable ξ .
We will consider the following constraints on x:

∫

�

x(ξ) dξ = V , x ≤ x ≤ x a.e. in �

with some given positive “volume” V and with x, x ∈ L∞(�) satisfying 0 ≤ x ≤ x
and

∫
�
x(ξ) dξ < V <

∫
�
x(ξ) dξ .

The minimum compliance single-load topology optimization problem reads as

inf
x∈L∞

∫

� f

f (ξ) · u(ξ) dξ

subject to

u solves (7)
∫

�

x(ξ) dξ = V

x ≤ x ≤ x a.e. in �. (9)

The objective, the so called compliance functional, measures how well the structure
can carry the load f .

Problem (9) is now discretized using the standard finite element method; the details
can be found, e.g., in [6,11]. In particular, we use quadrilateral elements, element-wise
constant approximation of function x and element-wise bilinear approximation of the
displacement field u. After discretization, the variables will be vectors x ∈ R

m and
u ∈ R

n , where m is the number of finite elements and n the number of degrees of

123

M. Kočvara

freedom (the number of finite element nodes times the spatial dimension). With every
element we associate the local (symmetric and positive semidefinite) stiffness matrix
Ki and (for elements including part of the boundary � f) the discrete load vector fi ,
i = 1, . . . ,m. Now we can formulate the discretized version of the linear elasticity
problem (7) as the following system of linear equations

K (x)u = f (10)

where K (x) =∑m
i=1 xi Ki is the global stiffness matrix and f =∑m

i=1 fi is the finite
element assembly of the load vector.

The topology optimization problem (9) becomes

min
u∈Rn , x∈Rm , γ∈R γ

subject to

K (x)u = f

f �u ≤ γ

m∑

i=1

xi ≤ V

xi ≤ xi ≤ xi , i = 1, . . . ,m. (11)

Using the Schur complement theorem, the compliance constraint and the equilib-
rium equation can be written as one matrix inequality constraint:

Z(x) :=
[
K (x) f
f � γ

]

� 0. (12)

The minimum compliance problem can then be formulated as follows:

min
x∈Rm , γ∈R γ

subject to

Z(x) � 0
m∑

i=1

xi ≤ V

xi ≤ xi ≤ xi , i = 1, . . . ,m. (13)

For ease of notation, in the rest of the paper we will restrict ourselves to the planar
case d = 2.Generalization of all ideas to the three-dimensional case is straightforward.

123

Decomposition of arrow type positive semidefinite matrices…

Fig. 4 Regular partitioning of
the computational domain into
subdomains coinciding with
groups of finite elements

.

1

1 xi

y

j

N

.

... ...

...

.

4 Decomposition of the topology optimization problem (13)

Let �h ⊂ R
2 be a polygonal approximation of � discretized by finite elements.

Assume that �h is partitioned into p non-overlapping subdomains Dk , k = 1, . . . , p,
whose boundaries coincide with finite element boundaries. In our examples � = �h

is a rectangle, the underlying finite element mesh is regular and so is the partitioning
into the subdomains. Confront Fig. 4 that shows typical decomposition of �h into
Nx × Ny subdomains.

Let Ik be the index set of all degrees of freedom associated with the subdomain
Dk , k = 1, . . . , p. The intersections of these index sets will include the degrees of
freedom on the respective internal boundaries and will be again denoted by

Ik,� = Ik ∩ I�, (k, �) ∈ Θp.

Denote by Dk the index set of elements belonging to subdomain Dk and define

K (k)(x) =
∑

i∈Dk

xi Ki . (14)

Matrix K (k)(x) = K (k) can then be partitioned as follows

K (k) =
[
K (k)
II K (k)

IΓ

K (k)
Γ I K (k)

Γ Γ

]

where the set Γ collects indices of all degrees of freedom corresponding with indices
in one of he sets I�,k or Ik,�, � = 1, . . . , p; the set I then collects indices of all
remaining “interior” degrees of freedom in Dk .

We are now in a position to apply the theorems from Sect. 2. Notice that
Assumptions 1–3 are satisfied, as well as the additional assumptions of Theorem 3.
Assumption 4 is discussed below.

123

M. Kočvara

Case A – Chordal decomposition Let us first apply Corollary 1. It says that the matrix
inequality Z(x) � 0 from (13) can be equivalently replaced by the following matrix
inequalities

Z (k)
A :=

⎡

⎢
⎣

K (k)
II(x) K (k)

IΓ
(x) 0

K (k)
Γ I(x) K (k)

Γ Γ (x) f (k)

0 (f (k))� 0

⎤

⎥
⎦+

⎡

⎣
0 0 0
0 S(k) σ (k)

0 (σ (k))� s(k)

⎤

⎦ � 0 (15)

where

S(k) = −
∑

�:�<k
I�,k �=∅

S�,k +
∑

�:�>k
Ik,� �=∅

Sk,� (16)

σ (k) = −
∑

�:�<k
I�,k �=∅

σ�,k +
∑

�:�>k
Ik,� �=∅

σk,�. (17)

The additional variables are the matrices, vectors and scalars

Sk,� ∈ S
|Ik,�|, σk,� ∈ R

|Ik,�|, s ∈ R
p, (k, �) ∈ Θp.

Case B – Arrow decomposition Now we apply Theorem 3. In this case, the matrix
inequality Z(x) � 0 from (13) can be replaced by the following matrix inequalities

Z (k)
B :=

⎡

⎢
⎣

K (k)
II(x) K (k)

IΓ
(x) 0

K (k)
Γ I(x) K (k)

Γ Γ (x) f (k)

0 (f (k))� 0

⎤

⎥
⎦+

⎡

⎣
0 0 0
0 0 g(k)

0 (g(k))� γ (k)

⎤

⎦ � 0 (18)

where

g(k) = −
∑

�:�<k
I�,k �=∅

g�,k +
∑

�:�>k
Ik,� �=∅

gk,�. (19)

The additional variables g•,• and γ , respectively, have the same dimensions as the
variables σ•,• and s in Case A.

Recall that Theorem 3 does not use the restrictive Assumption 4 from Sect. 2.
This is important, because Assumption 4 is not satisfied when the domain � contains
holes, and so the decomposition technique would not be applicable to some practical
problems. Consider, for instance, the finite element mesh in Fig. 4 and assume that
the (i, j)th subdomain is not part of the domain �, it is a hole with no finite elements.
Then, even if we assume all matrices K (k) to be dense, the sparsity graph of K (x) is
not chordal, as it contains the chordless cycle connecting (more than 3) nodes on the
boundary of the internal hole.

123

Decomposition of arrow type positive semidefinite matrices…

Before formulating the decomposed version of problem (13) we notice that, accord-
ing to Corollary 1 and Theorem 3, Z = ∑p

k=1 Z
(k)
A = ∑p

k=1 Z
(k)
B , which means, in

particular, that

γ =
p∑

k=1

sk =
p∑

k=1

γk .

We will therefore replace the variable γ in the decomposed problems by either sk or
γk and the objective function by one of the above sums.

Case A Using the chordal decomposition approach, the decomposed optimization
problem in variables

x ∈ R
m, s ∈ R

p,

σ = {σk,�
}
(k,�)∈Θp

, σk,� ∈ R
|Ik,�|

S = {Sk,�
}
(k,�)∈Θp

, Sk,� ∈ S
|Ik,�|

is formulated as follows

min
x, s, σ, S

p∑

k=1

sk

subject to
∑

i∈D
xi ≤ V

x ≤ x ≤ x

Z (k)
A � 0 k = 1, . . . , p (20)

with Z (k)
A defined as in (15), (16), (17).

Case B Using the arrow decomposition approach, the decomposed optimization
problem in variables

x ∈ R
m, γ ∈ R

p,

g = {gk,�
}
(k,�)∈Θp

, gk,� ∈ R
|Ik,�|

reads as

min
x, γ, g

p∑

k=1

γk

123

M. Kočvara

7,8

25,26

27,28

29,30

31,32

33,34

35,36

37,38

39,40

1 5 9 13

141062

3 7 11 15

161284

1,2

3,4

5,6

9,10

11,12

13,14

15,16

17,18

19,20

21,22

23,24 3

2 4

1

Fig. 5 Example 4: Problem setting, finite element mesh (left) and decomposition into four subdomains
(right)

subject to
∑

i∈D
xi ≤ V

x ≤ x ≤ x

Z (k)
B � 0 k = 1, . . . , p (21)

with Z (i, j)
B defined as in (18), (19).

A versus B Consider now the finite element mesh and decomposition as in Fig. 4 with
nx × ny finite elements and Nx × Ny subdomains. Instead of (13) we can solve one
of the decomposed problems (20) and (21). In Case A of the chordal decomposition
the single matrix inequality of dimension (n + 1) × (n + 1) is replaced by Nx · Ny

inequalities of dimension of order 2(nx/Nx + 1)(ny/Ny + 1) + 1 and we have to add
Nx (Ny − 1) + (Nx − 1)Ny additional vectors σ•,• of a typical size 2(nx/Nx + 1)
or 2(ny/Ny + 1), the same number of additional (dense) matrix variables S•,• of the
same order and Nx ·Ny scalar variables s•. (Recall that the factor 2 stems from the fact
that there are two degrees of freedom at every finite element node.) In Case B of the
arrow decomposition, the number and order of the new matrix constraints is the same
as above but we only need the additional scalar and vector variables; the additional
matrix variables are not needed.

Later in Sect. 6 we will see that these decompositions leads to enormous speed-
up in computational time of a state-of-the-art SDO solver. We will also see that the
omission of the additional matrix variables in the arrow decomposition can make a
big difference.

Example 4 The notation used in the above decomposition approaches is rather cum-
bersome, so let us illustrate it using a simple example.

Figure 5 presents a finite element mesh with 16 elements and 25 nodes. All nodes
on the left-hand side are fixed and thus eliminated from the stiffness matrix. Hence the

123

Decomposition of arrow type positive semidefinite matrices…

Fig. 6 Sparsity structure of
stiffness matrix K in Example 4

corresponding stiffness matrix will have dimension 40 × 40 (two degrees of freedom
associated with every free finite element node, as depicted in the figure). The structure
of the corresponding stiffness matrix K is shown in Fig. 6; here the elements corre-
sponding to interior degrees of freedom (index sets I) are denoted by circles, while
elements associated with the the intersections Ik,� are marked by full dots.

Thus in the original topology optimization problem (13) we have n = 40 and
m = 16 and the matrix constraint Z(x) � 0 is of dimension 41× 41. We now decom-
pose the problem into four subdomains, containing elements {1, 2, 5, 6}, {3, 4, 7, 8},
{9, 10, 13, 14}, {11, 12, 15, 16}; see Fig. 5–right. Then

I1 = {1, . . . , 6, 11, . . . , 16}, I2 = {5, . . . , 10, 15, . . . , 20},
I3 = {11, . . . , 16, 21, . . . , 26, 31, . . . , 36}, I4 = {15, . . . , 20, 25, . . . , 30, 35, . . . , 40},

I1,2 = {5, 6, 15, 16}, I1,3 = {11, . . . , 16}, I1,4 = {15, 16},
I2,3 = {15, 16}, I2,4 = {15, . . . , 20}, I3,4 = {15, 16, 25, 26, 35, 36}.

The structure of the stiffness matrices associated with domains 1–4 is shown, left-to-
right, in Fig. 7. Notice that indices 15,16 (marked by red dots in Figs. 6 and 7) are
contained in all six sets I•,•.

The chordal decomposition problem (20) will have four matrix constraints, two of
order 13 and two of order 19, and additional variables s ∈ R

6, σ1,4, σ2,3 ∈ R
2, σ1,2 ∈

R
4, σ1,3, σ2,4, σ3,4 ∈ R

6 and S1,4, S2,3 ∈ S
2, S1,2 ∈ S

4, S1,3, S2,4, S3,4 ∈ S
6. The

arrow decomposition problem (21) will have the same number of matrix constraints as
(20) and additional variables γ ∈ R

6, g1,4, g2,3 ∈ R
2, g1,2 ∈ R

4, g1,3, g2,4, g3,4 ∈ R
6.
��

123

M. Kočvara

Fig. 7 Sparsity structure of stiffness matrices K1, . . . , K4 associated with subdomains 1–4 in Example 4

Fig. 8 Partitioning of domain �

into two subdomains with
interface boundary �I

1

Γ
fΓ

Ω

ΩΓI 2
u

5 Decomposition by fictitious loads

So far, all the reasoning was purely algebraic. There is, however, an alternative, func-
tional analytic view of the arrow decomposition in Theorem 3.Wewill present it in this
section. The purpose is to illustrate a different viewpoint and so, to keep the notation
simple, we will only consider the case of two subdomains.

5.1 Infinite dimensional setting

Let us recall the weak formulation (7) of the elasticity problem depending on param-
eter x :

a(x; u, v) =
∫

� f

f v ds ∀v ∈ V. (22)

Let � be partitioned into two mutually disjoint subdomains �1 and �2 such that
�1 ∪ �2 = �. Denote the interface boundary between the two subdomains by �I ;
see Fig. 8. We consider the general situation when �u and � f may be a part of both,
∂�1 ∩ ∂Ω and ∂�2 ∩ ∂Ω . Define ai as a restriction of the bilinear form a to �i (the
integral in (8) is simply computed over �i), f i = f |∂�i ,

V(Ωi) = {v ∈ [H1(�i)]2 | v = 0 on �u ∩ ∂�i }, i = 1, 2,

and

Vi = {v ∈ [H1(�i)]2 | v = 0 on (�u ∩ ∂�i) ∪ �I }, i = 1, 2.

123

Decomposition of arrow type positive semidefinite matrices…

Consider the following “restricted” problems:

Find u ∈ [H1(�1)]2 such that u − u∗ ∈ V1 and

a1(x; u, v) =
∫

� f ∩∂�1

f 1v ds ∀v ∈ V1; (23)

Find u ∈ [H1(�2)]2 such that u − u∗ ∈ V2 and

a2(x; u, v) =
∫

� f ∩∂�2

f 2v ds ∀v ∈ V2. (24)

The following theorem forms a basis of our approach.

Theorem 4 Assume that u∗ solves (22). For all x ∈ L∞(�) there exists g ∈
[H−1/2(�I)]2 such that solutions to (23) and (24) are equal to respective solutions of
the following problems

find u ∈ V(�1) s.t. a1(x; u, v) =
∫

� f ∩∂�1

f 1v ds + 〈g, v〉�I ∀v ∈ V(�1), (25)

find u ∈ V(�2) s.t. a2(x; u, v) =
∫

� f ∩∂�2

f 2v ds − 〈g, v〉�I ∀v ∈ V(�2), (26)

where 〈·, ·〉�I denotes the duality pairing between [H−1/2(�I)]2 and [H1/2(�I)]2.
Proof The requested function g is the outcome of the respective Steklov–Poincaré
operator applied to u∗; see, e.g., [12]. ��
In the above theorem, function g can be interpreted as a fictitious load applied to either
of the problems (25), (26). The theorem says that there exists such a g that the solutions
of (25), (26) are equivalent to the solution of the “full” problem (22) restricted to the
respective subdomain. Or, in other words, the solutions of (25), (26) can be “glued”
to form the solution of (22).

5.2 Finite dimensional setting

Now assume that the discretization of � is such that the interface boundary �I is a
union of boundaries of some finite elements. More precisely, we assume that the index
set of finite elements used to the discretization of � can be split into two disjoint
subsets

{1, 2, . . . ,m} = D1 ∪ D2, D1 ∩ D2 = ∅,

such that �i is discretized by elements with indices from Di , i = 1, 2. Define

f (1) =
∑

i∈D1

fi , f (2) =
∑

i∈D2

fi ,

123

M. Kočvara

the restrictions of the load vector f on boundaries of �1 and �2, respectively.
Denote the index set of degrees of freedom associated with finite element nodes on

�I by I1,2. Let n� be the dimension of I1,2.
Finally, for a vector in z ∈ R

n� denote by ←→z its extension to Rn :

←→z i :=
〈
zi if i ∈ I1,2
0 if i ∈ R

n\I1,2 .

Thediscrete version ofTheorem4can then be formulated as follows. (The following
corollary is, in fact, trivial in the finite dimension; however, we need the above theorem
to understand the meaning of the fictitious load and its existence in the original setting
of the problem.)

Corollary 2 Assume that u∗ solves (10). Then for all x ∈ R
m there exists g ∈ R

n�

such that
⎛

⎝
∑

i∈D1

xi Ki

⎞

⎠ u∗ = f (1) + ←→g (27)

⎛

⎝
∑

i∈D2

xi Ki

⎞

⎠ u∗ = f (2) − ←→g . (28)

Notice that (27), (28) are still systems of dimension n; however, many rows and
columns in thematrix and the right hand side are equal to zero, so they can be solved as
systems of dimensions |N (1)| and |N (2)|, respectively. Hence, if we knew the fictitious
load g, we could replace the large system of Eq. (10) by two smaller ones which,
numerically, would be more efficient. Of course, we do not know it. However, and this
is the key idea of this section, the linear system (10) is a constraint in an optimization
problem, hence we can add g among the variables and, instead of searching for the
optimal design x and the corresponding u satisfying (10), search for optimal x and for
a pair (u, g) satisfying two smaller equilibrium Eqs. (27) and (28).

We can now formulate a result regarding the decomposition of the discretized
topology optimization problem (11).

Theorem 5 Problem (11) is equivalent to the following problem:

min
x∈Rm , u∈Rn ,γ1∈R, γ2∈R, g∈Rn�

γ1 + γ2

subject to
m∑

i=1

xi ≤ V

x ≤ x ≤ x
⎛

⎝
∑

i∈D1

xi Ki

⎞

⎠ u = f (1) + ←→g

123

Decomposition of arrow type positive semidefinite matrices…

⎛

⎝
∑

i∈D2

xi Ki

⎞

⎠ u = f (2) − ←→g

(f (1) + ←→g)�u ≤ γ1

(f (2) − ←→g)�u ≤ γ2. (29)

In particular, if (x̃, ũ, γ̃) is a solution of (11) then there is γ̃1 ∈ R+, γ̃2 ∈ R+, g̃ ∈
R
n� such that γ̃ = γ̃1 + γ̃2 and (x̃, ũ, γ̃1, γ̃2, g̃) is a solution of (29). Vice versa, if

(x̂, û, γ̂1, γ̂2, ĝ) is a solution of (29) then (x̂, û, γ̂1 + γ̂2) is a solution of (11).

Proof The theorem follows from the comparison of the KKT conditions of both prob-
lems. Assuming that (x̃, ũ, γ̃) solves (11), we define g̃ = (

∑
i∈D1

x̃i Ki)ũ − f (1)

and γ̃1 = (f (1) + g̃)�u, γ̃2 = (f (2) − g̃)�u. Then it is straightforward to check that
(x̃, ũ, γ̃1, γ̃2, g̃) satisfies theKKTconditions of (29). Nowassume that (x̂, û, γ̂1, γ̂2, ĝ)
is a solution of (29). Then (x̂, û, γ̂1 + γ̂2) is feasible in (11). We know from above
that (x̃, ũ, γ̃1, γ̃2, g̃) is a solution of (29) with the optimal objective value γ̃1 + γ̃2.
Because both problems are equivalent to convex problems (their semidefinite refor-
mulations), then γ̃ = γ̃1 + γ̃2 = γ̂1 + γ̂2 is also the optimal objective value of (11),
hence (x̂, û, γ̂1, γ̂2, ĝ) is also optimal for (11). ��

Using again the Schur complement theorem, we finally arrive at the decomposition
of the SDO problem (13).

Corollary 3 Problem (13) can be equivalently formulated as follows:

min
x∈Rm , γ1∈R, γ2∈R, g∈Rn�

γ1 + γ2

subject to
m∑

i=1

xi ≤ V

x ≤ x ≤ x
⎛

⎝
γ1 (f (1) + ←→g)�

f (1) + ←→g
∑

i∈D1

xi Ki

⎞

⎠ � 0

⎛

⎝
γ2 (f (2) − ←→g)�

f (2) − ←→g
∑

i∈D2

xi Ki

⎞

⎠ � 0. (30)

Problem (30) is now exactly the same as problem (21) arising from arrow decom-
position applied to two subdomains.

123

M. Kočvara

Fig. 9 Data of numerical examples: geometry, boundary condition and forces (left) and a sample decom-
position into 4 × 2 subdomains (right)

6 Numerical experiments

The decomposition techniques described in the article were applied to an example
whose data (geometry, boundary conditions and forces) are shown in Fig. 9–left.
We always use regular decomposition of the rectangular domain; an example of a
decomposition into 8 subdomains is shown in Fig. 9–right.We have used finite element
meshes with up to 160 × 80 elements.

We tested several codes to solve theSDOproblems.Herewepresent results obtained
byMOSEK, version 8.0 [9]. The reason for this is that MOSEK best demonstrated the
decomposition idea; the speed-up achieved by the decomposition was most significant
when using this software.

When solving the SDO problems, we used default MOSEK settings with the excep-
tion of duality gap parameter MSK_DPAR_INTPNT_CO_TOL_REL_GAP that was set
to 10−9, instead of the default value 10−8. We will comment on the resulting accuracy
of the solution later in the section.

We also tried to solve smaller problems by SparseCoLO [2], software that performs
the decomposition of matrix constraints based on Theorem 1 automatically. In partic-
ular, the software checks whether the matrix in question has a chordal sparsity graph;
if not, the graph is completed to be chordal. After that, maximal cliques are found and
Theorem 1 is applied. Because the sparsity graph of the matrix in problem (13) is not
chordal, a chordal completion is performed by SparseCoLO. Such a completion is not
unique and may thus lead to different sets of maximal cliques. And here is the main
difference to our approach: while we can steer the decomposition to result in smaller
matrix constraints of the same size, matrix constraints resulting from application of
SparseCoLO are of variable size, some small, some rather large. This fact has a big
effect on the efficiency of SparseCoLO, as we will see in the examples below.

In all experiments we used a 2018MacBook Pro with 2.3 GHz dual-core Intel Core
i5, Turbo Boost up to 3.6 GHz and 16 GB RAM, andMATLAB version 9.2.0 (2017a).

Remark 1 (Element-wise decomposition) The above text suggests that we always per-
form decomposition of the original finite element mesh into several (possibly uniform)
sub-meshes, each of them having interior points; cf. Figs. 4, 5 and 9, and the notation
used in Sect. 4. However, nothing prevents us from associating each subdomain with
a finite element. When every subdomain consist of a single finite element, then the
subdomains have no interior points, apart from those lying on the boundary of Ω and
having no neighboring element. For instance, in Example 1, Fig. 5, these would only

123

Decomposition of arrow type positive semidefinite matrices…

be degrees of freedom number 31, 32, 39, 40. In the numerical examples below, we
will see that the big number of additional variables makes this option less attractive
that other decompositions. However, while not the most effective of all decomposi-
tions, it is still much less computationally demanding than the original problem. The
element-wise decomposition has one big advantage in simplicity of data preparation:
the user can use any standard finite-element mesh generator and does not have to
worry about definition of subdomains. This may be particularly advantageous in case
of highly irregular meshes.

6.1 Computational results

In the following tables, we present results of the Nx × Ny examples using the chordal
and arrow decomposition. In these tables the first row of numbers shows data for the
original problem (13), the remaining rows are for the decomposed problems. The first
column shows the number of subdomains, the next two ones the number of variables
and the size of the largest matrix inequality. After that, we present the total number
of iterations needed by MOSEK before it terminated. The next two columns show the
total CPU time and CPU time per one iteration and are followed by columns reporting
speed-up relative to the original problem formulation, both total and per iteration.

In the final column we see the MOSEK constant MSK_DINF_INTPNT_OPT_
STATUS, a number that is supposed to converge to 1. Let us call this constant μ,
for brevity. In our experience, MOSEK delivers acceptable solution reporting “Solu-
tion status: OPTIMAL” when

0.999 ≤ μ ≤ 1.0009.

When μ is farther away from 1, MOSEK, typically in these examples, announces
“Solution status: NEAR_OPTIMAL.” For instance, in the 120 × 60 example with
chordal decomposition with 800 subdomains, MOSEK finished with μ = 0.9946 and
the final objective value was correct to 3 digits, while with 1800 subdomains MOSEK
reported μ = 0.9865 and we only got 2 correct digits in the objective function.

We first present results for the 40 × 20 example using the chordal decomposition;
see Table 1.

Table 1 Results obtained by MOSEK for the 40 × 20 example using chordal decomposition

No. of doms No. of vars Size of matrix No. of iters CPU (s) Opt status

Total Per iter

1 801 1681 69 1045 15 0.9999

8 3523 243 58 31 0.53 0.9996

32 5489 73 44 9.7 0.22 0.9997

50 6376 51 46 8.8 0.19 0.9995

200 11243 19 37 6.9 0.19 0.9987

800 24529 9 35 12 0.34 0.9980

123

M. Kočvara

Table 2 Results obtained by MOSEK for the 40 × 20 example using arrow decomposition

No. of doms No. of vars Size of matrix No. of iters CPU Speed-up Opt status

Total Per iter Total Per iter

1 801 1681 69 1045 15 1 1 0.9999

8 1032 243 70 28 0.40 37 38 0.9999

32 1492 73 63 7.6 0.12 138 126 1.0003

50 1764 51 64 7.1 0.11 147 137 0.9999

200 3544 19 51 5.1 0.10 204 151 0.9999

800 9204 9 46 6.9 0.15 150 100 0.9992

Table 3 Results obtained by MOSEK for the 40 × 20 example using SparseCoLO decomposition

No. of doms No. of vars Size of matrix No. of iters CPU Speed-up

Total Per iter Total Per iter

34 22997 11…260 42 301 7 3 2

The table shows that while we increase the number of the subdomains (refine the
decomposition), the number of variables increases (those are the additional matrix
variables in chordal decomposition) and the size of the constraints decreases. We can
further see from Table 1 that the total number of iterations needed to solve any of the
problem formulations is almost constant. The main message of Table 1 is in columns
5 and 6; here we can see tremendous decrease in the CPU time when solving the
decomposed problems.

We now solve the same 40 × 20 example using the arrow decomposition. The
results are presented in Table 2. We have added two more columns showing the speed-
up relative to the undecomposed problem, both total and per iteration.

In all examples presented in Table 2, MOSEK reported Optimal solution status.
Comparing result in Tables 1 and 2, we can see that the arrow decomposition is not
only more efficient than the chordal one, due to smaller number of variables, but also
delivers more accurate solution, i.e., a better conditioned SDO problem.

For a comparison, in Table 3 we present result for example 40 × 20 obtained by
solving problems decomposed by the automatic decomposition software SparseCoLO.
In this case, the size of the 34 matrix constraints varied from 11 to 260. The decom-
posed problem is still solved more efficiently that the original one but that speed-up is
negligible, compared to either the chordal or the arrow decomposition from Tables 1
and 2.

The next Table 4 presents results for the 80 × 40 discretization and chordal
decomposition, while Table 5 present the results for the same problem using arrow
decomposition. Thiswas the largest problemwe could solve byMOSEK in the original
formulation (13), due to memory limitations.

As we can see, for a larger problem the speed-up obtained by arrow decomposition
is even more significant.

123

Decomposition of arrow type positive semidefinite matrices…

Table 4 Results obtained by MOSEK for the 80 × 40 example using chordal decomposition

No. of doms No. of vars Size of matrix No. of iters CPU (s) Opt status

Total Per iter

1 3201 6561 104 78813 758 0.9999

8 12583 883 74 1302 18 0.9992

32 17449 243 56 173 3.1 0.9993

128 24265 73 51 62 1.2 0.9990

200 27631 51 46 53 1.2 0.9993

800 46873 19 40 41 1.0 0.9986

3200 100249 9 32 52 1.6 0.9975

Table 5 Results obtained by MOSEK for the 80 × 40 example using arrow decomposition

No. of doms No. of vars Size of matrix No. of iters CPU (s) Speed-up Opt status

Total Per iter Total Per iter

1 3201 6561 104 78813 758 1 1 0.9999

8 3632 883 88 1098 12.5 72 61 0.9999

32 4412 243 83 121 1.5 651 520 0.9999

128 6308 73 69 25 0.4 3153 2092 0.9999

200 7424 51 65 18 0.3 4379 2737 0.9999

800 14864 19 62 17 0.3 4636 2764 0.9999

3200 37604 9 44 25 0.6 3153 1334 0.9999

Table 6 Results obtained by MOSEK for the 120 × 60 example using chordal decomposition

No. of doms No. of vars Size of matrix No. of iters CPU (s) Opt status

Total Per iter

1 7200 14641 139† 1045932† 7524 0.9999

200 51539 19 60 236 3.9 0.9950

800 76977 19 50 129 2.6 0.9946

1800 106903 19 47 114 2.4 0.9865

Iteration count and CPU time in the first row are estimated and marked by the † symbol

Examples with finer discretization cannot be solved by MOSEK in the original
formulation (13)(on the laptop we used for the experiments). They can, however,
easily be solved in the decomposed setting. The results are presented in the next
tables. In these tables, we also show estimated number of iterations and CPU time
for the original problem; these numbers are extrapolated from the lower-dimensional
problems (also those that are not presented here).

Table 6 presents results for the 120 × 60 discretization and chordal decomposi-
tion, while Table 7 shows the results for the same example, this time using arrow
decomposition.

123

M. Kočvara

Table 7 Results obtained by MOSEK for the 120 × 60 example using arrow decomposition

No. of doms No. of vars Size of matrix No. of iters CPU (s) Speed-up Opt status

Total Per iter Total Per iter

1 7200 14641 †139 †1045932 7525 1 1 0.9999

50 9524 339 96 524 5.5 1996 1379 0.9996

200 12904 99 82 89 1.1 11752 6933 0.9997

450 16984 51 82 55 0.67 19017 11219 0.9997

800 21764 33 71 37 0.52 28268 14439 0.9997

1800 33424 19 65 42 0.65 24903 11645 0.9998

7200 85204 9 55 90 1.6 11621 4598 0.9997

Iteration count and CPU time in the first row are estimated and marked by the † symbol

Table 8 Results obtained by MOSEK using arrow decomposition

Problem Original Decomposed Speed-up

No. of
vars

Size of
matrix

CPU
total

No. of
vars

Size of
matrix

CPU total Opt status

40 × 20 801 1681 1045 3544 19 5 0.9999 204

60 × 30 1801 3721 12468 8164 19 9 0.9999 1370

80 × 40 3201 6561 78813 14684 19 17 0.9999 4636

100 × 50 5001 10201 †312560 23104 19 25 0.9999 12502

120 × 60 7201 14641 †1045932 33424 19 42 0.9998 24903

140 × 70 9801 19881 †2900382 45664 19 59 0.9994 49159

160 × 80 12801 25921 †7003213 59764 19 74 0.9984 94638

Complexityc·sizeq q = 3.18 q = 1.0006

†Extrapolated CPU times

When using the chordal decomposition (Table 6), MOSEK had difficulties with
convergence to the optimal solution. In case of 800 subdomains, the final objective
value was correct to 3 digits, while for the 1800 subdomains only to 2 digits. In
both cases, the solution status of MOSEK was “Nearly optimal”. In case of arrow
decomposition, all problems finished with “Optimal” solution status. Again, the arrow
decomposition outperforms the chordal one, so from now on we will only focus on
the arrow decomposition.

From the results presented so far, it seems that the most efficient decomposition
is either the finest or the second-finest one (not counting the element-wise decompo-
sition); in the first case, each subdomain contains four finite elements, in the second
case 16 finite elements. To get a clearer idea about the relation of the problem size
and speed-up, we present the next Table 8 of results for examples with dimension
increasing from 40 × 20 to 160 × 80 elements. For each example we only consider
the finest decomposition with four finite elements per subdomain. So the size of every

123

Decomposition of arrow type positive semidefinite matrices…

y = c.x3.1806

y = c.x2.8435

y = c.x1.0006

1

10

100

1000

10000

100000

1000000

10000000

600 6000

CP
U

 �
m

es
 in

 se
co

nd
s

Number of variables

CPU original
CPU/iter original
CPU decomposed

Fig. 10 Complexity of the original problem (top graph), of a single iteration in the original problem (middle)
and of the decomposed problem (bottom)

matrix inequality is always at most 19. The CPU times for original formulation of the
larger problems have been extrapolated and are denoted by the † symbol.

The last row of Table 8 presents the estimate of computational complexity of each
approach, as a function cνq of problem size ν; in this case, ν is the number of variables
of the SDO problem, as reported in the table. The exponent q is estimated from the
CPU times. In case of the original, undecomposed problem, we calculated q ≈ 3.18
which slightly underestimates the theoretical complexity of interior point methods
for SDO. The decomposed problem, on the other hand, exhibits linear complexity
with q ≈ 1.0006. See also Fig. 10 for graphical representation of the complexity of
the original problem (top line), single iteration of the original problem (middle line)
and of the decomposed problem (bottom line). This, in our opinion, is the principal
contribution of the arrow decomposition method.

Acknowledgements The author would like to thank Masakazu Kojima for initiating the discussions on
chordal decomposition of the topology optimization problem. The work on this article was initiated while
the author was visiting the Institute for Pure and Applied Mathematics, UCLA. The support and friendly
atmosphere of the Institute are acknowledged with gratitude. Thanks go also to Allan Lo, University of
Birmingham, and two anonymous referees; their comments lead to significant improvements of the paper.
Last but not least, the author wishes to thank MOSEK ApS for providing him with the academic version of
their software.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

M. Kočvara

References

1. Agler, J., Helton,W.,McCullough, S., Rodman, L.: Positive semidefinite matrices with a given sparsity
pattern. Linear Algebra Appl. 107, 101–149 (1988)

2. Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., Yamashita, M.: User’s Manual for Sparsecolo: Con-
versionMethods for Sparse Conic-Form Linear Optimization. Tech. Rep, Department ofMathematical
and Computing Sciences, Tokyo Institute of Technology, Tokyo (2009)

3. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via
matrix completion i: general framework. SIAM J. Optim. 11(3), 647–674 (2001)

4. Griewank, A., Toint, P.L.: On the existence of convex decompositions of partially separable functions.
Math. Program. 28(1), 25–49 (1984)

5. Grone, R., Johnson, C., Sà, E., Wolkowitz, H.: Positive definite completions of partial Hermitian
matrices. Linear Algebra Appl. 5(8), 109–124 (1984)

6. Haslinger, J., Kočvara, M., Leugering, G., Stingl, M.: Multidisciplinary free material optimization.
SIAM J. Appl. Math. 70(7), 2709–2728 (2010)

7. Kakimura, N.: A direct proof for the matrix decomposition of chordal-structured positive semidefinite
matrices. Linear Algebra Appl. 433(4), 819–823 (2010)

8. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix
inequalities via positive semidefinite matrix completion. Math. Program. 129(1), 33–68 (2011)

9. MOSEK ApS: The MOSEK Optimization Toolbox for MATLAB Manual. Version 8.0 (2016)
10. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite

programming via matrix completion ii: implementation and numerical results. Math. Program. 95(2),
303–327 (2003)

11. Petersson, J.: A finite element analysis of optimal variable thickness sheets. SIAM J. Numer. Anal.
36(6), 1759–1778 (1999)

12. Quarteroni, A., Valli, A.: Theory and application of Steklov–Poincaré operators for boundary-value
problems. In: Spigler, R. (ed.) Applied and Industrial Mathematics: Venice-1, 1989, pp. 179–203.
Springer Netherlands, Dordrecht (1991)

13. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends
Optim. 1(4), 241–433 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Decomposition of arrow type positive semidefinite matrices with application to topology optimization
	Abstract
	1 Introduction
	2 Decomposition of positive semidefinite matrices
	2.1 Matrices with chordal sparsity graphs
	2.2 Matrices embedded in those with a chordal sparsity graph
	2.3 Arrow type matrices

	3 Application: topology optimization problem, semidefinite formulation
	4 Decomposition of the topology optimization problem (13)
	5 Decomposition by fictitious loads
	5.1 Infinite dimensional setting
	5.2 Finite dimensional setting

	6 Numerical experiments
	6.1 Computational results

	Acknowledgements
	References

